A256333 Number of R&G Family matchings on n edges.
1, 3, 13, 61, 301, 1552, 8277, 45284, 252753, 1433633, 8239993, 47887467, 280927846, 1661387046, 9894376821, 59288650788, 357198545904, 2162437157263, 13147835385477, 80251977589719, 491573099486143, 3020738578507674, 18617035563669489, 115046892012376542, 712710925868858139, 4425312432316379040, 27535525144298975942, 171670784266383750322, 1072246008621559982926, 6708644077265798380125
Offset: 1
Keywords
Examples
a(3)=13 because of the 15 matchings on 3 edges, two do not lie in the R&G Family. In canonical sequence form the missing matchings are given by 121323 and 123123. a(4)= 61 out of the 105 matchings on 4 edges, one such matching which does not lie in the R&G Family is given by 12234314.
Links
- Aziza Jefferson, The Substitution Decomposition of Matchings and RNA Secondary Structures, PhD Thesis, University of Florida, 2015.
- J. Reeder and R. Giegerich, Design, implementation and evaluation of a practical pseudo knot folding algorithm based on thermodynamics, BMC Bioinform. 5 (2004), Article #104.
- C. Saule, M. Régnier, J.-M. Steyaert, and A. Denise, Counting RNA pseudoknotted structures, J. Comput. Biol. 18(10), (2011), 1339-1351.
Programs
-
Maple
f := RootOf(x^2*_Z^4 + x*(1-x)*(_Z-x*_Z)*_Z - (1-x)^2*_Z + (1-x)^2); series(f, x=0, 30);
Formula
G.f. f satisfies x^2f^4 + x(1-x)^2f^2 - (1-x)^2f + (1-x)^2.
Comments