A256334 Number of C&C Family matchings on n edges.
1, 1, 3, 12, 51, 227, 1052, 5030, 24634, 122950, 623140, 3198502, 16593124, 86864578, 458294970, 2434421685, 13008748377, 69882215729, 377172620330, 2044303447067, 11122504636031, 60723579401396, 332564474286299, 1826591420755058, 10058928726906713, 55528582177881182, 307224615377125853, 1703330011411361882, 9461963582991098963, 52655804456941167376, 293523046295844013225
Offset: 0
Keywords
Examples
a(3)=12 because of the 15 matchings on 3 edges, three do not lie in the C&C Family. In canonical sequence form the missing matchings are given by 121323, 123123, and 123312.
Links
- S. Cao and S.-J. Chen, Predicting structures and stabilities for H-type pseudo knots with inter helix loops, RNA 15 (2009), 696-706.
- Aziza Jefferson, The Substitution Decomposition of Matchings and RNA Secondary Structures, PhD Thesis, University of Florida, 2015.
- C. Saule, M. Régnier, J.-M. Steyaert, and A. Denise, Counting RNA pseudoknotted structures, J. Comput. Biol. 18(10), (2011), 1339-1351.
Programs
-
Maple
f := RootOf(x^2*_Z^3 + x*(1-x)^2*_Z^2 - (1-x)^2*_Z + (1-x)^2); series(f, x=0, 30);
-
Mathematica
f[x_] = Root[x^2 #^3 + x(1-x)^2 #^2 - (1-x)^2 # + (1-x)^2&, 1]; CoefficientList[f[x] + O[x]^31, x] (* Jean-François Alcover, Oct 06 2019 *)
Formula
G.f. f satisfies f = 1 + x*f^2 + (x^2*f^3)/(1-x)^2.
Extensions
a(0)=1 prepended by Alois P. Heinz, Jul 14 2017
Comments