cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256370 Positive integers n such that n^4 + (n+1)^4 + (n+2)^4 + (n+3)^4 + (n+4)^4 is prime.

Original entry on oeis.org

7, 25, 97, 115, 145, 169, 223, 247, 343, 379, 385, 421, 541, 577, 601, 607, 673, 691, 751, 847, 895, 961, 997, 1111, 1129, 1237, 1267, 1303, 1327, 1459, 1489, 1555, 1615, 1639, 1657, 1663, 1741, 1765, 1771, 1807, 1819, 1831, 1873, 1903, 1927, 1945, 1951, 1963
Offset: 1

Views

Author

Bui Quang Tuan, Mar 26 2015

Keywords

Comments

NK(n,k) conjecture:
If k + 1 is prime then there are infinitely many primes of form:
NK(n,k) = n^k + (n+1)^k + (n+2)^k + ... + (n+k-1)^k + (n+k)^k
If k + 1 is not prime then gcd(NK(n,k), k + 1) > 1 with any positive integer n.
Some examples in the OEIS:
k = 1, primes of form NK(n,1) are all odd primes A065091.
k = 2, primes of form NK(n,2) is A027864.
k = 4, this sequence generates all primes of form NK(n,4).
All terms == 1 (mod 6). Bunyakovsky's conjecture implies that the sequence is infinite. - Robert Israel, Mar 29 2015

Examples

			7 is in the sequence because 7^4 + 8^4 + 9^4 + 10^4 + 11^4 = 37699 which is prime.
		

Crossrefs

Cf. A027864.

Programs

  • Magma
    [n: n in [0..2*10^3] | IsPrime( n^4 + (n+1)^4 + (n+2)^4 + (n+3)^4 + (n+4)^4)]; // Vincenzo Librandi, Mar 27 2015
    
  • Maple
    F:= unapply(expand(add((n+i)^4,i=0..4)), n):
    select(isprime, [seq(6*i+1,i=1..1000)]); # Robert Israel, Mar 29 2015
  • Mathematica
    Select[Range@ 2000, PrimeQ[#^4 + (# + 1)^4 + (# + 2)^4 + (# + 3)^4 + (# + 4)^4] &] (* Michael De Vlieger, Mar 26 2015 *)
    Position[Partition[Range[2000]^4,5,1],?(PrimeQ[Total[#]]&)]//Flatten (* _Harvey P. Dale, Apr 28 2022 *)
  • Python
    from gmpy2 import is_prime
    A256370_list = [n for n in range(1,10**6) if is_prime(5*n*(n*(n*(n + 8) + 36) + 80) + 354)] # Chai Wah Wu, Mar 29 2015