cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256384 Number A(n,k) of factorizations of m^n into at most n factors, where m is a product of exactly k distinct primes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 19, 5, 1, 1, 1, 41, 171, 74, 7, 1, 1, 1, 122, 1675, 1975, 248, 11, 1, 1, 1, 365, 16683, 64182, 20096, 814, 15, 1, 1, 1, 1094, 166699, 2203215, 2213016, 187921, 2457, 22, 1, 1, 1, 3281, 1666731, 76727374, 268446852, 69406700, 1609727, 7168, 30, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 27 2015

Keywords

Comments

A(n,k) is also the number of k-partite partitions of (n)^k into at most n k-tuples. A(2,2) = 5: [(2,2)], [(2,1),(0,1)], [(2,0),(0,2)], [(1,2),(1,0)], [(1,1),(1,1)].

Examples

			A(2,2) = 5: (2*3)^2 = 36 has 5 factorizations into at most 2 factors: 36, 2*18, 3*12, 4*9, 6*6.
Square array A(n,k) begins:
  1, 1,   1,     1,       1,         1, ...
  1, 1,   1,     1,       1,         1, ...
  1, 2,   5,    14,      41,       122, ...
  1, 3,  19,   171,    1675,     16683, ...
  1, 5,  74,  1975,   64182,   2203215, ...
  1, 7, 248, 20096, 2213016, 268446852, ...
		

Crossrefs

Columns k=0-3 give: A000012, A000041, A254686, A254811.
Rows n=0+1,2-3 give: A000012, A007051, A256493.
Cf. A219727.

Programs

  • Mathematica
    b[n_, k_, i_] := b[n, k, i] = If[n>k, 0, 1] + If[PrimeQ[n] || i<2, 0, Sum[ If[d > k, 0, b[n/d, d, i-1]], {d, Divisors[n][[2 ;; -2]]}]]; A[0, ] = 1; A[1, ] = 1; A[, 0] = 1; A[n, k_] := With[{t = Times @@ Prime[ Range[k] ]}, b[t^n, t^n, n]]; Table[diag = Table[A[n-k, k], {k, n, 0, -1}]; Print[ diag]; diag, {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)