A256384 Number A(n,k) of factorizations of m^n into at most n factors, where m is a product of exactly k distinct primes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 19, 5, 1, 1, 1, 41, 171, 74, 7, 1, 1, 1, 122, 1675, 1975, 248, 11, 1, 1, 1, 365, 16683, 64182, 20096, 814, 15, 1, 1, 1, 1094, 166699, 2203215, 2213016, 187921, 2457, 22, 1, 1, 1, 3281, 1666731, 76727374, 268446852, 69406700, 1609727, 7168, 30, 1
Offset: 0
Examples
A(2,2) = 5: (2*3)^2 = 36 has 5 factorizations into at most 2 factors: 36, 2*18, 3*12, 4*9, 6*6. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 1, 2, 5, 14, 41, 122, ... 1, 3, 19, 171, 1675, 16683, ... 1, 5, 74, 1975, 64182, 2203215, ... 1, 7, 248, 20096, 2213016, 268446852, ...
Crossrefs
Programs
-
Mathematica
b[n_, k_, i_] := b[n, k, i] = If[n>k, 0, 1] + If[PrimeQ[n] || i<2, 0, Sum[ If[d > k, 0, b[n/d, d, i-1]], {d, Divisors[n][[2 ;; -2]]}]]; A[0, ] = 1; A[1, ] = 1; A[, 0] = 1; A[n, k_] := With[{t = Times @@ Prime[ Range[k] ]}, b[t^n, t^n, n]]; Table[diag = Table[A[n-k, k], {k, n, 0, -1}]; Print[ diag]; diag, {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
Comments