cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A219727 Number A(n,k) of k-partite partitions of {n}^k into k-tuples; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 5, 9, 3, 1, 1, 15, 66, 31, 5, 1, 1, 52, 712, 686, 109, 7, 1, 1, 203, 10457, 27036, 6721, 339, 11, 1, 1, 877, 198091, 1688360, 911838, 58616, 1043, 15, 1, 1, 4140, 4659138, 154703688, 231575143, 26908756, 476781, 2998, 22, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 26 2012

Keywords

Comments

A(n,k) is the number of factorizations of m^n where m is a product of k distinct primes. A(2,2) = 9: (2*3)^2 = 36 has 9 factorizations: 36, 3*12, 4*9, 3*3*4, 2*18, 6*6, 2*3*6, 2*2*9, 2*2*3*3.
A(n,k) is the number of (n*k) X k matrices with nonnegative integer entries and column sums n up to permutation of rows. - Andrew Howroyd, Dec 10 2018

Examples

			A(1,3) = 5: [(1,1,1)], [(1,1,0),(0,0,1)], [(1,0,1),(0,1,0)], [(1,0,0),(0,1,0),(0,0,1)], [(0,1,1),(1,0,0)].
A(2,2) = 9: [(2,2)], [(2,1),(0,1)], [(2,0),(0,2)], [(2,0),(0,1),(0,1)], [(1,2),(1,0)], [(1,1),(1,1)], [(1,1),(1,0),(0,1)], [(1,0),(1,0),(0,2)], [(1,0),(1,0),(0,1),(0,1)].
Square array A(n,k) begins:
  1,   1,    1,      1,        1,         1,         1,       1, ...
  1,   1,    2,      5,       15,        52,       203,     877, ...
  1,   2,    9,     66,      712,     10457,    198091, 4659138, ...
  1,   3,   31,    686,    27036,   1688360, 154703688, ...
  1,   5,  109,   6721,   911838, 231575143, ...
  1,   7,  339,  58616, 26908756, ...
  1,  11, 1043, 476781, ...
  1,  15, 2998, ...
		

Crossrefs

Columns k=0..3 give: A000012, A000041, A002774, A219678.
Rows n=0..4 give: A000012, A000110, A020555, A322487, A358781.
Main diagonal gives A322488.
Cf. A188392, A219585 (partitions of {n}^k into distinct k-tuples), A256384, A318284, A318951.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); EulerT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, 1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p,n,k), [1,n]); s*q[#q-j]))} \\ Andrew Howroyd, Dec 11 2018

A254686 Number of ways to put n red and n blue balls into n indistinguishable boxes.

Original entry on oeis.org

1, 1, 5, 19, 74, 248, 814, 2457, 7168, 19928, 53688, 139820, 354987, 878434, 2128102, 5052010, 11781881, 27019758, 61035671, 135928105, 298784144, 648726349, 1392474574, 2956730910, 6214668074, 12937060340, 26686392239, 54572423946, 110680119454, 222710856175, 444776676764
Offset: 0

Views

Author

Brian Chen, Feb 08 2015

Keywords

Comments

See a comment on A254811 about multiset partitions and the Knuth reference. - Wolfdieter Lang, Mar 26 2015

Examples

			For n = 2 the a(2) = 5 ways to put 2 red balls and 2 blue balls into 2 indistinguishable boxes are (RRBB)(), (RRB)(B), (RBB)(R), (RR)(BB), (RB)(RB).
		

Crossrefs

Column k=2 of A256384.
Main diagonal of A277239.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k, i) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n) or i<2, 0, add(
          `if`(d>k, 0, b(n/d, d, i-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(6^n$2,n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 26 2015
  • Mathematica
    b[n_, k_, i_] := b[n, k, i] = If[n > k, 0, 1] + If[PrimeQ[n] || i < 2, 0, Sum[If[d > k, 0, b[n/d, d, i - 1]], {d, Divisors[n] [[2 ;; -2]]}]]; a[n_] := b[6^n, 6^n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

A254811 Number of ways to put n red, n blue, and n green balls into n indistinguishable boxes.

Original entry on oeis.org

1, 1, 14, 171, 1975, 20096, 187921, 1609727, 12827392, 95701382, 673873648, 4503935052, 28728268655, 175644353402, 1033386471872, 5870110651051, 32289704469531, 172438417419444, 896076816466546, 4540173176769827, 22469530730320361
Offset: 0

Views

Author

Brian Chen, Feb 08 2015

Keywords

Comments

a(n) is the sum of the number of partitions of the multiset {R^n, B^n, G^n} into 1, 2, ..., n parts (as observed in the pink box comments by Joerg Arndt and Tom Edgar). a(0) := 1. For partitions of multisets see the Knuth reference. - Wolfdieter Lang, Mar 26 2015
a(n) is also the number of factorizations of m^n into at most n factors where m is a product of 3 distinct primes. a(2) = 14: (2*3*5)^2 = 900 has 14 factorizations into at most 2 factors: 900, 30*30, 36*25, 45*20, 50*18, 60*15, 75*12, 90*10, 100*9, 150*6, 180*5, 225*4, 300*3, 450*2. - Alois P. Heinz, Mar 26 2015

Examples

			For n = 2 the a(2) = 14 ways to put 2 red balls, 2 blue balls, and 2 green balls into 2 indistinguishable boxes are (RRBBGG)(), (RRBBG)(G), (RRBGG)(B), (RBBGG)(R), (RRBB)(GG), (RRGG)(BB), (BBGG)(RR), (RRBG)(BG), (RBBG)(RG), (RBGG)(RB), (RRB)(BGG), (RBB)(RGG), (RRG)(BBG), (RGB)(RGB).
		

References

  • D. A. Knuth, The Art of Computer Programming. Volume 4, Fascicle 3, Addison-Wesley, 2010, pp. 74 - 77.

Crossrefs

Cf. A254686.
Column k=3 of A256384.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k, i) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n) or i<2, 0, add(
          `if`(d>k, 0, b(n/d, d, i-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(30^n$2,n):
    seq(a(n), n=0..8);  # Alois P. Heinz, Mar 26 2015
  • Mathematica
    b[n_, k_, i_] := b[n, k, i] = If[n>k, 0, 1] + If[PrimeQ[n] || i<2, 0, Sum[ If[d>k, 0, b[n/d, d, i-1]], {d, Divisors[n][[2 ;; -2]]}]]; a[n_] := b[30^n, 30^n, n]; Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

A256493 Number of factorizations of m^3 into at most 3 factors, where m is a product of exactly n distinct primes.

Original entry on oeis.org

1, 3, 19, 171, 1675, 16683, 166699, 1666731, 16666795, 166666923, 1666667179, 16666667691, 166666668715, 1666666670763, 16666666674859, 166666666683051, 1666666666699435, 16666666666732203, 166666666666797739, 1666666666666928811, 16666666666667190955
Offset: 0

Views

Author

Alois P. Heinz, Mar 30 2015

Keywords

Comments

Also the number of n-partite partitions of (3)^n into at most 3 n-tuples.

Examples

			The a(1) = 3 factorizations of 2^3 into at most 3 factors are: 8, 2*4, 2*2*2.
The a(2) = 19 factorizations of (2*3)^3 into at most 3 factors are: 216, 2*108, 3*72, 4*54, 6*36, 8*27, 9*24, 12*18, 2*2*54, 2*3*36, 2*4*27, 2*6*18, 2*9*12, 3*3*24, 3*4*18, 3*6*12, 3*8*9, 4*6*9, 6*6*6.
		

Crossrefs

Row n=3 of A256384.

Programs

  • Maple
    a:= n-> (10^n + 3*2^n + 2)/6: seq(a(n), n=0..30);
  • Mathematica
    LinearRecurrence[{13,-32,20},{1,3,19},30] (* Harvey P. Dale, Dec 30 2019 *)

Formula

G.f.: -(12*x^2-10*x+1)/((x-1)*(2*x-1)*(10*x-1)).
a(n) = (10^n + 3*2^n + 2)/6.
Showing 1-4 of 4 results.