A256394 Prime values of pi(n) that divide n.
2, 3, 11, 67, 71, 439, 1051, 6469, 40087, 100361, 100363, 251737, 251761, 637319, 637327, 4124459, 10553513, 10553551, 27067277, 69709733, 179993171, 465769817, 3140421769, 8179002109, 8179002133, 55762149029, 55762149071, 382465573489, 1003652347081
Offset: 1
Keywords
Examples
pi(6) = 3 is prime, and 3 divides 6, so 3 is a member.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..49
- K. Gaitanas, An explicit formula for the prime counting function, arXiv:1311.1398 [math.NT], 2013.
- K. Gaitanas, An Explicit Formula for the Prime Counting Function Which is Valid Infinitely Often, Amer. Math. Monthly, 122 (2015), 283.
- S. W. Golomb, On the Ratio of N to pi(N), American Mathematical Monthly, 69 (1962), 36-37.
- R. T. Harger and W. L. Hightower, An Interesting Property of x/pi(x), College Math. J., 40 (2009), 213-214.
- Eric Weisstein's World of Mathematics, Prime Counting Function
Programs
-
Mathematica
c = 0; lpf[n_] := If[ PrimeQ[n], c++; n, Transpose[ FactorInteger[n]][[1, -1]]]; Do[ If[lpf[n] == c, Print[ PrimePi[n]]], {n, 2, 10^7}] PrimePi[Select[Select[Range[2,10^6],IntegerQ[#/PrimePi[#]]&],PrimeQ[PrimePi[#]]&]] (* Ivan N. Ianakiev, Apr 15 2015 *) Select[Table[{PrimePi[n],n},{n,10^6}],PrimeQ[#[[1]]]&&Divisible[#[[2]],#[[1]]]&][[All,1]] (* The program generates the first 9 terms of the sequence. To generate more, increase the constant for n. *) (* Harvey P. Dale, Feb 08 2022 *)
-
PARI
for(n=1,10^6,if(isprime(p=primepi(n))&&!(n%primepi(n)),print1(p,", "))) \\ Derek Orr, Apr 14 2015
Extensions
More terms from Giovanni Resta, Sep 01 2018
Comments