cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256452 Number of integer solutions to n^2 = x^2 + y^2 with x>0, y>=0.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 1, 1, 5, 3, 1, 1, 3, 3, 1, 1, 1, 3, 3, 1, 3, 1, 3, 3, 3, 1, 1, 1, 3, 1, 1, 1, 1, 5, 3, 3, 3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 1, 1, 9, 1, 1, 3, 1, 3, 1, 1, 3, 3, 5, 1, 1, 3, 1, 3, 1, 3, 1, 1, 9, 1, 3
Offset: 1

Views

Author

Michael Somos, Mar 29 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(d::odd, (-1)^((d-1)/2), 0), d=numtheory[divisors](n^2)): seq(a(n), n=1..100);  # Ridouane Oudra, Aug 18 2024
  • Mathematica
    a[ n_] := Sum[ Mod[ Length@Divisors[n^2 - k^2], 2], {k, n}];
    a[ n_] := Length @ FindInstance[ n^2 == x^2 + y^2 && x > 0 && y >= 0, {x, y}, Integers, 10^9]; (* Michael Somos, Aug 15 2016 *)
    f[p_, e_] := If[Mod[p, 4] == 1, 2*e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 12 2020 *)
  • PARI
    {a(n) = sum(k=1, n, issquare(n^2 - k^2))};

Formula

Multiplicative with a(p^e) = 2*e + 1 if p == 1 (mod 4), otherwise a(p^e) = 1.
a(n) = 1 + 2*A046080(n) if n>0.
a(n) = A046109(n)/4 for n > 0. - Hugo Pfoertner, Sep 21 2023
a(n) = A002654(n^2). - Ridouane Oudra, Aug 18 2024