cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256468 Number of primes between prime(n)^2 and prime(n)*prime(n+1).

Original entry on oeis.org

1, 2, 2, 6, 4, 8, 5, 12, 22, 8, 27, 21, 11, 23, 38, 36, 16, 43, 31, 15, 52, 36, 52, 75, 45, 22, 42, 19, 48, 160, 47, 81, 22, 141, 26, 90, 89, 65, 102, 96, 40, 180, 40, 73, 38, 227, 227, 85, 44, 85, 129, 43, 216, 133, 140, 137, 45, 147, 105, 46, 260, 354, 115, 52, 108, 386, 165, 283, 64
Offset: 1

Views

Author

Antti Karttunen, Mar 30 2015

Keywords

Crossrefs

One less than A256447.

Programs

  • Mathematica
    Table[Abs@ Subtract[PrimePi[Prime[n]^2], PrimePi[Prime[n] Prime[n + 1]]], {n, 69}] (* Michael De Vlieger, Mar 30 2015 *)
    PrimePi[Times@@#]-PrimePi[#[[1]]^2]&/@Partition[Prime[Range[70]],2,1] (* Harvey P. Dale, Mar 31 2025 *)
  • PARI
    allocatemem(234567890);
    default(primelimit,4294965247);
    A256468(n) = (primepi(prime(n)*prime(n+1)) - primepi(prime(n)^2));
    for(n=1, 6542, write("b256468.txt", n, " ", A256468(n)));
    
  • Scheme
    (define (A256468 n) (let* ((p (A000040 n)) (p2 (* p p))) (let loop ((s 0) (k (* p (A000040 (+ 1 n))))) (cond ((= k p2) s) (else (loop (+ s (if (prime? k) 1 0)) (- k 1)))))))

Formula

a(n) = A256447(n)-1.
a(n) = A050216(n) - A256469(n).
a(n) = A256469(n) - A256470(n).