cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256469 Number of primes between prime(n)*prime(n+1) and prime(n+1)^2.

Original entry on oeis.org

1, 3, 4, 9, 5, 14, 6, 15, 25, 8, 30, 23, 9, 23, 42, 42, 16, 47, 35, 15, 54, 39, 62, 88, 44, 20, 45, 23, 52, 194, 52, 84, 27, 158, 32, 92, 97, 63, 96, 99, 36, 176, 37, 71, 37, 236, 252, 83, 38, 81, 141, 47, 222, 142, 134, 155, 46, 145, 94, 53, 252, 381, 105, 55, 107, 398, 176, 296, 61
Offset: 1

Views

Author

Antti Karttunen, Mar 30 2015

Keywords

Examples

			For n=1, there is only one prime in range prime(1)*prime(2) .. prime(2)^2, [6 .. 9], namely 7, thus a(1) = 1.
For n=2, the primes in range prime(2)*prime(3) .. prime(3)^2, [15 .. 25] are {17, 19, 23}, thus a(2) = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[Range[Prime[n] Prime[n + 1], Prime[n + 1]^2], ?PrimeQ], {n, 69}] (* _Michael De Vlieger, Mar 30 2015 *)
    Table[PrimePi[Prime[n+1]^2]-PrimePi[Prime[n]Prime[n+1]],{n,70}] (* Harvey P. Dale, Jul 31 2021 *)
  • PARI
    allocatemem(234567890);
    default(primelimit,4294965247);
    A256469(n) = (primepi(prime(n+1)^2) - primepi(prime(n)*prime(n+1)));
    for(n=1, 6541, write("b256469.txt", n, " ", A256469(n)));
    
  • Scheme
    (define (A256469 n) (let* ((p (A000040 n)) (q (A000040 (+ 1 n))) (q2 (* q q))) (let loop ((s 0) (k (* p q))) (cond ((= k q2) s) (else (loop (+ s (if (prime? k) 1 0)) (+ k 1)))))))

Formula

a(n) = A256448(n)+2.
a(n) = A050216(n) - A256468(n).
a(n) = A256468(n) + A256470(n).