A256492 Number of idempotents in the partial Jones monoid.
1, 2, 7, 24, 103, 416, 1998, 8822, 45661, 213674, 1167797, 5694690, 32445914, 163151262, 960580840, 4945645808, 29899013071, 156834641076, 968947169139
Offset: 0
Examples
In degree at most 1, the idempotents are all partial identities, giving a(0)=1 and a(1)=2. In degree 2 ,there are 7; the four partial identities, the Temperly-Lieb cup-and-cap, and its 3 subpictures (one of which is the empty picture, which is also a partial identity, hence the overcount by 1).
References
- V. F. R. Jones, The Potts model and the symmetric group, in: Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras (Kyuzeso, 1993), World Sci. Publishing, 1994, 259-267.
Links
- Egri-Nagy Attila, Organic semigroup theory: ferns growing in the Jones/Temperley-Lieb monoid, on Computational Semigroup Theory at Wordpress, September 1, 2014.
- I. Dolinka, J. East et al, Idempotent Statistics of the Motzkin and Jones Monoids, arXiv: 1507.04838 [math.CO] (2015).
- J. East, Egri-Nagy A., A. R. Francis, J. D. Mitchell, Finite Diagram Semigroups: Extending the Computational Horizon, arXiv:1502.07150 [math.GR], 2015.
- K. Hatch, E. Ly, E. Posner, Presentation of the Motzkin Monoid, arXiv:1301.4518 [math.RT], 2013.
- K. W. Lau & D. G. FitzGerald, Ideal Structure of the Kauffman and Related Monoids, Communications in Algebra, 30:7 (2006), 2617-2629. doi:10.1080/00927870600651414
- J. D. Mitchell et al., Semigroups package for GAP.
Extensions
a(11)-a(18) computed using the GAP package Semigroups and added by James Mitchell, May 21 2016
Comments