A256493 Number of factorizations of m^3 into at most 3 factors, where m is a product of exactly n distinct primes.
1, 3, 19, 171, 1675, 16683, 166699, 1666731, 16666795, 166666923, 1666667179, 16666667691, 166666668715, 1666666670763, 16666666674859, 166666666683051, 1666666666699435, 16666666666732203, 166666666666797739, 1666666666666928811, 16666666666667190955
Offset: 0
Examples
The a(1) = 3 factorizations of 2^3 into at most 3 factors are: 8, 2*4, 2*2*2. The a(2) = 19 factorizations of (2*3)^3 into at most 3 factors are: 216, 2*108, 3*72, 4*54, 6*36, 8*27, 9*24, 12*18, 2*2*54, 2*3*36, 2*4*27, 2*6*18, 2*9*12, 3*3*24, 3*4*18, 3*6*12, 3*8*9, 4*6*9, 6*6*6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-32,20).
Crossrefs
Row n=3 of A256384.
Programs
-
Maple
a:= n-> (10^n + 3*2^n + 2)/6: seq(a(n), n=0..30);
-
Mathematica
LinearRecurrence[{13,-32,20},{1,3,19},30] (* Harvey P. Dale, Dec 30 2019 *)
Formula
G.f.: -(12*x^2-10*x+1)/((x-1)*(2*x-1)*(10*x-1)).
a(n) = (10^n + 3*2^n + 2)/6.
Comments