A256496 a(n) = 15(n mod 2) + 10(n mod 3) + 6(n mod 5).
31, 32, 33, 34, 35, 6, 37, 38, 39, 10, 41, 12, 43, 44, 15, 16, 47, 18, 49, 20, 21, 22, 53, 24, 25, 26, 27, 28, 59, 0, 31, 32, 33, 34, 35, 6, 37, 38, 39, 10, 41, 12, 43, 44, 15, 16, 47, 18, 49, 20, 21, 22, 53, 24, 25, 26, 27, 28, 59, 0, 31, 32, 33, 34, 35, 6
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Aaron Hacohen from Lunil?, כלבו (in Hebrew).
- Menachem Mendel Schneerson, אגרות קודש (in Hebrew).
- Wikipedia, Kol Bo
- Index entries for linear recurrences with constant coefficients, signature (-2,-2,-1,0,1,2,2,1).
Crossrefs
Programs
-
Mathematica
Table[15 Mod[n, 2] + 10 Mod[n, 3] + 6 Mod[n, 5], {n, 60}] (* Michael De Vlieger, Mar 31 2015 *) LinearRecurrence[{-2,-2,-1,0,1,2,2,1},{31,32,33,34,35,6,37,38},70] (* or *) PadRight[ {},70,{31,32,33,34,35,6,37,38,39,10,41,12,43,44,15,16,47,18,49,20,21,22,53,24,25,26,27,28,59,0}] (* Harvey P. Dale, Oct 31 2016 *)
-
PARI
vector(30, n, 15*(n%2) + 10*(n%3) + 6*(n%5)) \\ Michel Marcus, Mar 31 2015
Formula
a(n) = 15(n mod 2) + 10(n mod 3) + 6(n mod 5).
G.f.: -x*(59*x^6+146*x^5+201*x^4+195*x^3+159*x^2+94*x+31) / ((x-1)*(x+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Apr 07 2015
a(n) = -2*a(n-1) - 2*a(n-2) - a(n-3) + a(n-5) + 2*a(n-6) + 2*a(n-7) + a(n-8), for n>=9. - Vaclav Kotesovec, Apr 07 2015
Comments