A256517 Let c be the n-th composite number. Then a(n) is the smallest base b > 1 such that b^(c-1) == 1 (mod c^2), i.e., such that c is a 'Wieferich pseudoprime'.
17, 37, 65, 80, 101, 145, 197, 26, 257, 325, 401, 197, 485, 577, 182, 677, 728, 177, 901, 1025, 485, 1157, 99, 1297, 1445, 170, 1601, 1765, 1937, 82, 2117, 2305, 1047, 2501, 577, 529, 2917, 1451, 3137, 721, 3365, 3601, 3845, 244, 4097, 99, 1945, 4625, 530
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..3000 from Felix Fröhlich)
Programs
-
Mathematica
c = Select[Range@ 69, CompositeQ]; f[c_] := Block[{b = 2}, While[Mod[b^(c - 1), c^2] != 1, b++]; b]; f /@ c (* Michael De Vlieger, Apr 03 2015 *)
-
PARI
forcomposite(c=1, 1e3, b=2; while(Mod(b, c^2)^(c-1)!=1, b++); print1(b, ", "))
-
Python
from sympy import composite from sympy.ntheory.residue_ntheory import nthroot_mod def A256517(n): z = nthroot_mod(1,(c := composite(n))-1,c**2,True) return int(z[0]+c**2 if len(z) == 1 else z[1]) # Chai Wah Wu, May 18 2022