A256532 Product of n and the sum of remainders of n mod k, for k = 1, 2, 3, ..., n.
0, 0, 3, 4, 20, 18, 56, 64, 108, 130, 242, 204, 364, 434, 540, 576, 867, 846, 1216, 1220, 1470, 1694, 2254, 2040, 2575, 2912, 3375, 3472, 4379, 4140, 5177, 5344, 6072, 6698, 7630, 7128, 8621, 9424, 10491, 10320, 12177, 11928, 13975, 14432, 15255, 16468, 18941, 17952, 20286, 21000, 22899, 23608, 26765, 26568, 29095
Offset: 1
Keywords
Examples
a(5) = 20 because 5 * (0 + 1 + 2 + 1) = 5 * 4 = 20. a(6) = 18 because 6 * (0 + 0 + 0 + 2 + 1) = 6 * 3 = 18. a(7) = 56 because 7 * (0 + 1 + 1 + 3 + 2 + 1) = 7 * 8 = 56.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[n*Sum[Mod[n,i],{i,2,n-1}],{n,55}] (* Ivan N. Ianakiev, May 04 2015 *)
-
PARI
vector(50, n, n*sum(k=1, n, n % k)) \\ Michel Marcus, May 05 2015
-
Python
def A256532(n): s=0 for k in range(1,n+1): s+=n%k return s*n # Indranil Ghosh, Feb 13 2017
-
Python
from math import isqrt def A256532(n): return n**3+n*((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 22 2023
Comments