cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256546 Numbers n such that n^4 + (n+1)^4 + ... + (n+k)^4 is composite for every k>=0.

Original entry on oeis.org

11, 17, 18, 22, 29, 32, 35, 39, 41, 44, 46, 49, 50, 51, 53, 55, 57, 59, 60, 61, 64, 66, 69, 70, 73, 75, 76, 77, 79, 81, 86, 92, 95, 96, 101, 102, 103, 107, 112, 113, 114, 116, 117, 118, 120, 125, 131, 133, 135, 137, 138, 141, 143, 144, 147, 148, 149, 150, 151
Offset: 1

Views

Author

Keywords

Comments

Number n is in the sequence if and only if the following seven numbers are all composite:
P_1(n) = 2n^4 + 4n^3 + 6n^2 + 4n + 1,
P_2(n) = 3n^4 + 12n^3 + 30n^2 + 36n + 17,
P_3(n) = 5n^4 + 40n^3 + 180n^2 + 400n + 354,
P_4(n) = 6n^4 + 60n^3 + 330n^2 + 900n + 979,
P_5(n) = 10n^4 + 180n^3 + 1710n^2 + 8100n + 15333,
P_6(n) = 15n^4 + 420n^3 + 6090n^2 + 44100n + 127687,
P_7(n) = 30n^4 + 1740n^3 + 51330n^2 + 756900n + 4463999.
For a generalization, see comment in A256581.

Crossrefs

Programs

  • Magma
    [n: n in [0..2*10^2] | not IsPrime(2*n^4+4*n^3+6*n^2 +4*n+1) and not IsPrime(3*n^4+12*n^3+30*n^2+36*n+17) and not IsPrime(5*n^4+40*n^3+180*n^2+400*n+354) and not IsPrime(6*n^4+60*n^3+330*n^2+900*n+979) and not IsPrime(10*n^4+ 180*n^3+1710*n^2+8100*n+15333) and not IsPrime(15*n^4+ 420*n^3+6090*n^2+44100*n+127687) and not IsPrime(30*n^4+ 1740*n^3+51330*n^2+756900*n+4463999)]; // Vincenzo Librandi, Apr 03 2015