cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256553 Triangle T(n,k) in which the n-th row contains the increasing list of distinct orders of degree-n permutations; n>=0, 1<=k<=A009490(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 10, 12, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20, 21, 30
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2015

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1, 2;
  1, 2, 3;
  1, 2, 3, 4;
  1, 2, 3, 4, 5, 6;
  1, 2, 3, 4, 5, 6;
  1, 2, 3, 4, 5, 6, 7, 10, 12;
  1, 2, 3, 4, 5, 6, 7,  8, 10, 12, 15;
  1, 2, 3, 4, 5, 6, 7,  8,  9, 10, 12, 14, 15, 20;
  1, 2, 3, 4, 5, 6, 7,  8,  9, 10, 12, 14, 15, 20, 21, 30;
		

Crossrefs

Row sums give A060179.
Row lengths give A009490.
Last elements of rows give A000793.
Main diagonal gives A000027.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x,
          b(n, i-1)+(p-> add(coeff(p, x, t)*x^ilcm(t, i),
          t=1..degree(p)))(add(b(n-i*j, i-1), j=1..n/i)))
        end:
    T:= n->(p->seq((h->`if`(h=0, [][], i))(coeff(p, x, i))
         , i=1..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x,
         b[n, i - 1] + Function[p, Sum[Coefficient[p, x, t]*x^LCM[t, i],
         {t, 1, Exponent[p, x]}]][Sum[b[n - i*j, i - 1], {j, 1, n/i}]]];
    T[n_] := Function[p, Table[Function[h, If[h == 0, Nothing, i]][
         Coefficient[p, x, i]], {i, 1, Exponent[p, x]}]][b[n, n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jul 15 2021, after Alois P. Heinz *)

Formula

Sum_{k>=0} T(n,k)*A256554(n,k) = A181844(n).
T(n,k) = k for n>0 and 1<=k<=n.