cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A257401 God's number for a Rubik's cube of size n X n X n (using the half turn metric).

Original entry on oeis.org

0, 11, 20
Offset: 1

Views

Author

Peter Woodward, Apr 21 2015

Keywords

Comments

"God's Number" is the maximum number of turns required to solve any scrambled cube. The "Half turn metric" considers a 90- or 180-degree turn of any side to be a single turn. The number is not known for cubes of size larger than 3 X 3 X 3.
God's number has been proved using a brute-force attack for the 2 X 2 X 2 and 3 X 3 X 3 cubes. For the 4 X 4 X 4 cube, it has been proved only that the lower bound is 31, while the most probable value is considered to be 32; solving this by brute force would require checking all the A075152(4) possible permutations of the "Master Cube". - Marco Ripà, Aug 05 2015

Crossrefs

Cf. A256573 (quarter turn metric), A054434 (possible positions), A075152 (possible permutations).

Formula

From Ben Whitmore, May 31 2021: (Start)
a(n) = Theta(n^2/log(n)) [Demaine et al.].
Conjecture: a(n) ~ (1/4)*log(24!/4!^6) * n^2/log(n).
(End)
Showing 1-1 of 1 results.