cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A257403 Multiplicative with a(2) = 1, a(2^e) = 0 if e>1, a(3^e) = 0^e, a(p^e) = e+1 if p == 1, 3 (mod 8), a(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0
Offset: 1

Views

Author

Michael Somos, Apr 21 2015

Keywords

Examples

			G.f. = x + x^2 + 2*x^11 + 2*x^17 + 2*x^19 + 2*x^22 + x^25 + 2*x^34 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[ # == 2, Boole[#2 == 1], # == 3, 0, Mod[#, 8] < 4, #2 + 1, True, Mod[#2 + 1, 2]]& @@@ FactorInteger[n])];
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, p+e==3, p%8 > 4, 1-e%2, e+1)))};

Formula

Moebius transform is the period 288 sequence A257477.
a(3*n) = a(4*n) = a(8*n + 5) = a(8*n + 7) = 0. a(2*n + 1) = a(4*n + 2).
a(6*n + 1) = A257399(n). a(6*n + 5) = 2*A257402(n).
a(24*n + 1) = A257398(n). a(24*n + 11) = 2*A255318(n). a(24*n + 17) = 2*A255319(n). a(24*n + 19) = 2*A255317(n).
From Michael Somos, Apr 22 2015: (Start)
a(3*n + 2) = A256505(n) unless n == 5 (mod 8). a(3*n + 19) = 2 * A256574(n) unless n == 2 (mod 8).
Expansion of F(q) + F(q^2) + G(q) + G(q^2) in powers of q where F(q) = q * A257399(q^6) and G(q) = 2 * q^11 * A257402(q^6). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(6*sqrt(2)) = 0.370240... . - Amiram Eldar, Oct 17 2022

A255320 Expansion of chi(-x) * psi(x^3) * psi(x^48) in powers of x where chi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0
Offset: 0

Views

Author

Michael Somos, Feb 21 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - x^5 + x^8 + x^16 - x^21 - x^33 + x^40 + x^48 - x^49 + ...
G.f. = q^19 - q^22 - q^34 + q^43 + q^67 - q^82 - q^118 + q^139 + q^163 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] EllipticTheta[ 2, 0, x^(3/2)] EllipticTheta[2, 0, x^(24)] / (4 x^(51/8)), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^2 * eta(x^96 + A)^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^48 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0 || n%8 == 2, 0, A = factor(3*n + 19); 1/2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, -(p+e==3), p%8 > 4, 1-e%2, e+1)))}; /* Michael Somos, Apr 24 2015 */

Formula

Expansion of q^(-19/3) * eta(q) * eta(q^6)^2 * eta(q^96)^2 / (eta(q^2) * eta(q^3) * eta(q^48)) in powers of q.
Euler transform of a period 96 sequence.
a(4*n + 2) = a(4*n + 3) = a(8*n + 4) = a(16*n + 9) = a(16*n + 13) = 0.
-2 * a(n) = A227395(3*n + 19). a(8*n) = A255317(n). a(16*n + 1) = -A255318(n). a(16*n + 5) = -A255319(n).
a(n) = (-1)^n * A256574(n). - Michael Somos, Apr 24 2015

A263767 Expansion of phi(-x) * psi(-x^8) * chi(x^24) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 0, 0, 2, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, -1, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 0, -4, 0
Offset: 0

Views

Author

Michael Somos, Oct 25 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 2*x^4 - x^8 - 2*x^12 + 2*x^16 + 2*x^17 - 2*x^24 - 2*x^25 + ...
		

Crossrefs

Cf. A256574.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^24, x^48] EllipticTheta[ 2, Pi/4, x^4] EllipticTheta[ 4, 0, x] / (2^(1/2) x), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^8 + A) * eta(x^32 + A) * eta(x^48 + A)^2 / (eta(x^2 + A) * eta(x^16 + A) * eta(x^24 + A) * eta(x^96 + A)), n))};
    
  • PARI
    q='q+O('q^99); Vec(eta(q)^2*eta(q^8)*eta(q^32)*eta(q^48)^2/(eta(q^2)*eta(q^16)* eta(q^24)*eta(q^96))) \\ Altug Alkan, Jul 31 2018

Formula

Expansion of eta(q)^2 * eta(q^8) * eta(q^32) * eta(q^48)^2 / (eta(q^2) * eta(q^16) * eta(q^24) * eta(q^96)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = 10368^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A256574.
a(4*n + 2) = a(4*n + 3) = a(8*n + 5) = 0.
Showing 1-3 of 3 results.