cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A256574 Expansion of chi(x) * psi(-x^3) * psi(x^48) in powers of x where psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Michael Somos, Apr 22 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^5 + x^8 + x^16 + x^21 + x^33 + x^40 + x^48 + x^49 + ...
G.f. = q^19 + q^22 + q^34 + q^43 + q^67 + q^82 + q^118 + q^139 + q^163 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] EllipticTheta[ 2, Pi/4, x^(3/2)] EllipticTheta[ 2, 0, x^24] / (2^(3/2) x^(51/8)), {x, 0, n}];
    a[ n_] := If[ n < 0 || Mod[n, 8] == 2, 0, (1/2) Times @@ (Which[# < 5, Boole[# + #2 == 3], Mod[#, 8] > 4, Mod[#2 + 1, 2], True, #2 + 1] & @@@ FactorInteger[ 3 n + 19])]; (* Michael Somos, Oct 25 2015 *)
  • PARI
    {a(n) = my(A, p, e); if( n<0 || n%8 == 2, 0, A = factor(3*n + 19); 1/2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, p+e==3, p%8 > 4, 1-e%2, e+1)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A) * eta(x^96 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^48 + A)), n))};

Formula

Expansion of q^(-19/3) * eta(q^2)^2 * eta(q^3) * eta(q^12) * eta(q^96)^2 / (eta(q) * eta(q^4) * eta(q^6) * eta(q^48)) in powers of q.
Euler transform of a period 96 sequence.
2 * a(n) = A257403(3*n + 19) unless n == 2 (mod 8).
a(4*n + 2) = a(4*n + 3) = a(8*n + 4) = a(16*n + 9) = a(16*n + 13) = 0.
a(4*n + 1) = A257402(n). a(8*n) = A255317(n). a(16*n + 1) = A255318(n). a(16*n + 5) = A255319(n).
a(n) = (-1)^n * A255320(n). - Michael Somos, Apr 24 2015
Expansion of f(x, x^5) * psi(x^48) in powers of x where psi(), f() are Ramanujan theta functions. - Michael Somos, Oct 25 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = 8^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A263767.

A256505 Expansion of phi(x^3) * phi(-x^48) / chi(-x^16) in powers of x where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 22 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x^3 + 2*x^12 + x^16 + 2*x^19 + 2*x^27 + 2*x^28 + x^32 + ...
G.f. = q^2 + 2*q^11 + 2*q^38 + q^50 + 2*q^59 + 2*q^83 + 2*q^86 + q^98 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^3] EllipticTheta[ 4, 0, x^48] QPochhammer[ -x^16, x^16], {x, 0, n}];
  • PARI
    {a(n) = my(A, p, e); if( n<0 || n%8 == 5, 0, A = factor(3*n + 2); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, p+e==3, p%8 > 4, 1-e%2, e+1)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^5 * eta(x^32 + A) * eta(x^48 + A)^2 / (eta(x^3 + A)^2 * eta(x^12 + A)^2 * eta(x^16 + A) * eta(x^96 + A)), n))};

Formula

Expansion of q^(-2/3) * eta(q^6)^5 * eta(q^32) * eta(q^48)^2 / (eta(q^3)^2 * eta(q^12)^2 * eta(q^16) * eta(q^96)) in powers of q.
Euler transform of a period 96 sequence.
a(n) = A257403(3*n + 2) unless n == 5 (mod 8).
a(4*n + 1) = a(4*n + 2) = a(8*n + 7) = a(16*n + 4) = a(16*n + 8) = 0.
a(4*N) = A257399(n). a(8*n+3) = 2*A255318(n). a(16*n) = A257398(n). a(16*n+12) = 2*A255317(n).

A257477 Multiplicative with a(2) = 0, a(4) = -1, a(2^e) = 0 if e>2, a(3) = -1, a(3^e) = 0^e if e>1, a(p^e) = 1 if p == 1, 3 (mod 8), a(p^e) = (-1)^e if p == 5, 7 (mod 8).

Original entry on oeis.org

1, 0, -1, -1, -1, 0, -1, 0, 0, 0, 1, 1, -1, 0, 1, 0, 1, 0, 1, 1, 1, 0, -1, 0, 1, 0, 0, 1, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, -1, 0, 0, -1, 0, 1, 0, -1, 1, -1, 0, -1, 0, -1, 0, 1, -1, -1, 0, 0, 0, 1, 0, 1, -1, 1, 0, -1, 0, 1, 0, -1, -1, -1, 0, -1
Offset: 1

Views

Author

Michael Somos, Apr 25 2015

Keywords

Examples

			G.f. = x - x^3 - x^4 - x^5 - x^7 + x^11 + x^12 - x^13 + x^15 + x^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Sign[n] If[ Abs[n] < 2, 1, Times @@ (Which[ # < 5, -Boole[# + #2 == 4], Mod[#, 8] < 4, 1, True, (-1)^#2] & @@@ FactorInteger[Abs@n])];
    f[x_] := (x + x^3)/(1 + x^4); CoefficientList[Series[f[x] - 2*f[x^3] - f[x^4] + f[x^9] + 2*f[x^12] - f[x^36], {x,0,50}], x] (* G. C. Greubel, Aug 03 2018 *)
  • PARI
    {a(n) = my(A, p, e); if( n==0, 0, A = factor(abs(n)); sign(n) * prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, -(p+e==4), if( p%8 < 4, 1, (-1)^e))))};

Formula

G.f.: f(x) - 2*f(x^3) - f(x^4) + f(x^9) + 2*f(x^12) - f(x^36) where f(x) = (x + x^3) / (1 + x^4) is the g.f. for A188510.
abs(a(2*n + 1)) = A168182(n+5).
a(4*n + 2) = a(8*n) = a(9*n) = 0.
a(n) = -a(-n) = a(n + 288) for all n in Z.
Moebius transform of A257403.
Sum_{k=1..n} abs(a(k)) ~ 5*n/9. - Amiram Eldar, Jan 29 2024

Extensions

Definition corrected by Georg Fischer, Jul 23 2022
Showing 1-3 of 3 results.