cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A256635 a(n) = the smallest number k such that the base-10 digital sum of sigma(k) is n.

Original entry on oeis.org

1, 19, 2, 3, 13, 5, 4, 7, 10, 12, 28, 18, 192, 67, 42, 273, 52, 138, 324, 336, 196, 300, 372, 438, 2716, 997, 1590, 3468, 2512, 3260, 5817, 5692, 4112, 17472, 10852, 15840, 18496, 27252, 22860, 24300, 31572, 35172, 61488, 165652, 138438, 265252, 285652, 292860
Offset: 1

Views

Author

Jaroslav Krizek, Apr 06 2015

Keywords

Comments

a(n) = the smallest number k such that A007953(A000203(k)) = n.
Note that A007953(A000203(k)) is also A067342(k).

Examples

			For n = 5; digital sum of sigma(13) = digital sum of 14 = 5. The number 13 is the smallest number with this property so a(5) = 13.
		

Crossrefs

Programs

  • Magma
    A256635:=func; [A256635(n):n in[1..50]];
    
  • Maple
    N := 10^6: # return all values before the first > N
    for n from 1 to N do
       v:= convert(convert(numtheory:-sigma(n),base,10),`+`);
       if not assigned(A[v]) then A[v]:= n fi;
    od:
    for count from 1 while assigned(A[count]) do od:
    seq(A[i],i=1..count-1); # Robert Israel, Apr 09 2015
  • Mathematica
    f[n_] := Block[{k = 1}, While[Plus @@ IntegerDigits[DivisorSigma[1, k]] != n, k++]; k]; Array[f, 48] (* Michael De Vlieger, Apr 07 2015 *)
  • PARI
    a(n) = {my(k = 1); while(sumdigits(sigma(k)) != n, k++); k;} \\ Michel Marcus, Apr 09 2015
    
  • Python
    from sympy.ntheory.factor_ import divisor_sigma
    def A256635(n):
        k = 1
        while sum(int(d) for d in str(divisor_sigma(k))) != n:
            k += 1
        return k # Chai Wah Wu, Apr 18 2015
Showing 1-1 of 1 results.