cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256643 a(n) = B*C*(n mod A) + 2*A*C*(n mod B) + 3*A*B*(n mod C) with A=3, B=5, C=11.

Original entry on oeis.org

166, 332, 333, 499, 335, 336, 502, 668, 669, 505, 176, 177, 343, 509, 180, 346, 512, 513, 679, 515, 516, 187, 353, 354, 190, 356, 357, 523, 689, 360, 526, 692, 198, 364, 200, 201, 367, 533, 534, 370, 536, 537, 703, 374, 45, 211, 377, 378, 544, 380, 381, 547
Offset: 1

Views

Author

Aaron Kastel, Apr 07 2015

Keywords

Comments

After 0 it cycles again from 166 (a(165)=0 so there are 165 (A*B*C) terms).
This is another variation on A256496, where a(n) = B*C*(n mod A) + A*C*(n mod B) + A*B*(n mod C), modified to take the values A=3, B=5, C=11 and still maintain the equivalence a(n) mod ABC = n mod ABC.
Here modification is required (to maintain that equivalence) so that 'BC' + 'AC' + 'AB' = ABC + 1 where 'BC', 'AC' and 'AB' are the coefficients. Therefore, a(n)= B*C*(n mod A) + 2A*C*(n mod B) + 3A*B*(n mod C) so that 5*11 + 2*3*11 + 3*3*5 = 3*5*11 = 55 + 66 + 45 = 166.
This is an example with 2 modifications.

Crossrefs

Cf. A255818 for an example with 1 modification and A256668 for 3 modifications.

Programs

  • Magma
    A:=3; B:=5; C:=11; [B*C*(n mod A)+2*A*C*(n mod B)+3*A*B*(n mod C): n in [1..165]]; // Bruno Berselli, Apr 14 2015

Formula

G.f.: -x*(824*x^15 +2306*x^14 +4280*x^13 +5921*x^12 +7229*x^11 +7710*x^10 +7530*x^9 +6855*x^8 +6180*x^7 +5505*x^6 +4830*x^5 +3826*x^4 +2659*x^3 +1495*x^2 +664*x +166) / ((x -1)*(x^2 +x +1)*(x^4 +x^3 +x^2 +x +1)*(x^10 +x^9 +x^8 +x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Apr 14 2015

Extensions

Definition corrected by Bruno Berselli, Apr 14 2015