cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256645 25-gonal pyramidal numbers: a(n) = n*(n+1)*(23*n-20)/6.

Original entry on oeis.org

0, 1, 26, 98, 240, 475, 826, 1316, 1968, 2805, 3850, 5126, 6656, 8463, 10570, 13000, 15776, 18921, 22458, 26410, 30800, 35651, 40986, 46828, 53200, 60125, 67626, 75726, 84448, 93815, 103850, 114576, 126016, 138193, 151130, 164850, 179376, 194731, 210938, 228020
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

If b(n,k) = n*(n+1)*((k-2)*n-(k-5))/6 is n-th k-gonal pyramidal number, then b(n,k) = A000292(n) + (k-3)*A000292(n-1) (see Deza in References section, p. 96).
Also, b(n,k) = b(n,k-1) + A000292(n-1) (see Deza in References section, p. 95). Some examples:
for k=4, A000330(n) = A000292(n) + A000292(n-1);
for k=5, A002411(n) = A000330(n) + A000292(n-1);
for k=6, A002412(n) = A002411(n) + A000292(n-1), etc.
This is the case k=25.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (23rd row of the table).

Crossrefs

Partial sums of A255184.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    k:=25; [n*(n+1)*((k-2)*n-(k-5))/6: n in [0..40]]; // Vincenzo Librandi, Apr 08 2015
  • Mathematica
    Table[n (n + 1) (23 n - 20)/6, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 26, 98}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
  • PARI
    concat(0, Vec(x*(1 + 22*x)/(1 - x)^4 + O(x^100))) \\ Colin Barker, Apr 07 2015
    

Formula

G.f.: x*(1 + 22*x)/(1 - x)^4.
a(n) = A000292(n) + 22*A000292(n-1) = A256716(n) + A000292(n-1), see comments.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Colin Barker, Apr 07 2015
E.g.f.: exp(x)*x*(6 + 72*x + 23*x^2)/6. - Elmo R. Oliveira, Aug 04 2025