A237616
a(n) = n*(n + 1)*(5*n - 4)/2.
Original entry on oeis.org
0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720
Offset: 0
After 0, the sequence is provided by the row sums of the triangle:
1;
2, 16;
3, 32, 31;
4, 48, 62, 46;
5, 64, 93, 92, 61;
6, 80, 124, 138, 122, 76;
7, 96, 155, 184, 183, 152, 91;
8, 112, 186, 230, 244, 228, 182, 106;
9, 128, 217, 276, 305, 304, 273, 212, 121;
10, 144, 248, 322, 366, 380, 364, 318, 242, 136; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).
Cf. sequences with formula n*(n+1)*(k*n-k+3)/6:
A000217 (k=0),
A000292 (k=1),
A000330 (k=2),
A002411 (k=3),
A002412 (k=4),
A002413 (k=5),
A002414 (k=6),
A007584 (k=7),
A007585 (k=8),
A007586 (k=9),
A007587 (k=10),
A050441 (k=11),
A172073 (k=12),
A177890 (k=13),
A172076 (k=14), this sequence (k=15),
A172078(k=16),
A237617 (k=17),
A172082 (k=18),
A237618 (k=19),
A172117(k=20),
A256718 (k=21),
A256716 (k=22),
A256645 (k=23),
A256646(k=24),
A256647 (k=25),
A256648 (k=26),
A256649 (k=27),
A256650(k=28).
-
List([0..40], n-> n*(n+1)*(5*n-4)/2); # G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(5*n-4)/2: n in [0..40]];
-
I:=[0,1,18,66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
-
seq(n*(n+1)*(5*n-4)/2, n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[n(n+1)(5n-4)/2, {n, 0, 40}]
CoefficientList[Series[x (1+14x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{4,-6,4,-1},{0,1,18,66},50] (* Harvey P. Dale, Jan 11 2015 *)
-
a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(n+1)*(5*n-4)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A254474
30-gonal numbers: a(n) = n*(14*n-13).
Original entry on oeis.org
0, 1, 30, 87, 172, 285, 426, 595, 792, 1017, 1270, 1551, 1860, 2197, 2562, 2955, 3376, 3825, 4302, 4807, 5340, 5901, 6490, 7107, 7752, 8425, 9126, 9855, 10612, 11397, 12210, 13051, 13920, 14817, 15742, 16695, 17676, 18685, 19722, 20787, 21880
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6 (28th row of the table).
Cf. similar sequences listed in
A255184.
A255185
26-gonal numbers: a(n) = n*(12*n-11).
Original entry on oeis.org
0, 1, 26, 75, 148, 245, 366, 511, 680, 873, 1090, 1331, 1596, 1885, 2198, 2535, 2896, 3281, 3690, 4123, 4580, 5061, 5566, 6095, 6648, 7225, 7826, 8451, 9100, 9773, 10470, 11191, 11936, 12705, 13498, 14315, 15156, 16021, 16910, 17823, 18760
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6 (24th row of the table).
Cf. similar sequences listed in
A255184.
-
[n*(12*n-11): n in [0..50]]; // G. C. Greubel, Jul 12 2024
-
Table[n (12 n - 11), {n, 50}]
PolygonalNumber[26,Range[0,50]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{0,1,26},50] (* Harvey P. Dale, Feb 02 2017 *)
-
a(n)=n*(12*n-11) \\ Charles R Greathouse IV, Jun 17 2017
-
[n*(12*n-11) for n in range(51)] # G. C. Greubel, Jul 12 2024
A256646
26-gonal pyramidal numbers: a(n) = n*(n+1)*(8*n-7)/2.
Original entry on oeis.org
0, 1, 27, 102, 250, 495, 861, 1372, 2052, 2925, 4015, 5346, 6942, 8827, 11025, 13560, 16456, 19737, 23427, 27550, 32130, 37191, 42757, 48852, 55500, 62725, 70551, 79002, 88102, 97875, 108345, 119536, 131472, 144177, 157675, 171990, 187146, 203167, 220077
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (24th row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(8*n-7)/2: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
-
Table[n (n + 1) (8 n - 7)/2, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 27, 102}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
-
[(8*n-7)*binomial(n+1,2) for n in range(51)] # G. C. Greubel, Jul 12 2024
A256647
27-gonal pyramidal numbers: a(n) = n*(n+1)*(25*n-22)/6.
Original entry on oeis.org
0, 1, 28, 106, 260, 515, 896, 1428, 2136, 3045, 4180, 5566, 7228, 9191, 11480, 14120, 17136, 20553, 24396, 28690, 33460, 38731, 44528, 50876, 57800, 65325, 73476, 82278, 91756, 101935, 112840, 124496, 136928, 150161, 164220, 179130, 194916, 211603, 229216
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (25th row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(25*n-22)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
-
Table[n (n + 1) (25 n - 22)/6, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 28, 106}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
A256648
28-gonal pyramidal numbers: a(n) = n*(n+1)*(26*n-23)/6.
Original entry on oeis.org
0, 1, 29, 110, 270, 535, 931, 1484, 2220, 3165, 4345, 5786, 7514, 9555, 11935, 14680, 17816, 21369, 25365, 29830, 34790, 40271, 46299, 52900, 60100, 67925, 76401, 85554, 95410, 105995, 117335, 129456, 142384, 156145, 170765, 186270, 202686, 220039, 238355
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (26th row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(26*n-23)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
-
Table[n (n + 1)(26 n - 23)/6, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 29, 110}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
A256649
29-gonal pyramidal numbers: a(n) = n*(n+1)*(9*n-8)/2.
Original entry on oeis.org
0, 1, 30, 114, 280, 555, 966, 1540, 2304, 3285, 4510, 6006, 7800, 9919, 12390, 15240, 18496, 22185, 26334, 30970, 36120, 41811, 48070, 54924, 62400, 70525, 79326, 88830, 99064, 110055, 121830, 134416, 147840, 162129, 177310, 193410, 210456, 228475, 247494
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (27th row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(9*n-8)/2: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
-
Table[n (n + 1)(9 n - 8)/2, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 30, 114}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
A256650
30-gonal pyramidal numbers: a(n) = n*(n+1)*(28*n-25)/6.
Original entry on oeis.org
0, 1, 31, 118, 290, 575, 1001, 1596, 2388, 3405, 4675, 6226, 8086, 10283, 12845, 15800, 19176, 23001, 27303, 32110, 37450, 43351, 49841, 56948, 64700, 73125, 82251, 92106, 102718, 114115, 126325, 139376, 153296, 168113, 183855, 200550, 218226, 236911, 256633
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (28th row of the table).
Cf. similar sequences listed in
A237616.
-
[n*(n+1)*(28*n-25)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
-
Table[n (n + 1) (28 n - 25)/6, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 31, 118}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
Showing 1-8 of 8 results.
Comments