cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A237616 a(n) = n*(n + 1)*(5*n - 4)/2.

Original entry on oeis.org

0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720
Offset: 0

Views

Author

Bruno Berselli, Feb 10 2014

Keywords

Comments

Also 17-gonal (or heptadecagonal) pyramidal numbers.
This sequence is related to A226489 by 2*a(n) = n*A226489(n) - Sum_{i=0..n-1} A226489(i).

Examples

			After 0, the sequence is provided by the row sums of the triangle:
   1;
   2,  16;
   3,  32,  31;
   4,  48,  62,  46;
   5,  64,  93,  92,  61;
   6,  80, 124, 138, 122,  76;
   7,  96, 155, 184, 183, 152,  91;
   8, 112, 186, 230, 244, 228, 182, 106;
   9, 128, 217, 276, 305, 304, 273, 212, 121;
  10, 144, 248, 322, 366, 380, 364, 318, 242, 136; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).

Crossrefs

Cf. sequences with formula n*(n+1)*(k*n-k+3)/6: A000217 (k=0), A000292 (k=1), A000330 (k=2), A002411 (k=3), A002412 (k=4), A002413 (k=5), A002414 (k=6), A007584 (k=7), A007585 (k=8), A007586 (k=9), A007587 (k=10), A050441 (k=11), A172073 (k=12), A177890 (k=13), A172076 (k=14), this sequence (k=15), A172078(k=16), A237617 (k=17), A172082 (k=18), A237618 (k=19), A172117(k=20), A256718 (k=21), A256716 (k=22), A256645 (k=23), A256646(k=24), A256647 (k=25), A256648 (k=26), A256649 (k=27), A256650(k=28).

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(5*n-4)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(n+1)*(5*n-4)/2: n in [0..40]];
    
  • Magma
    I:=[0,1,18,66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
    
  • Maple
    seq(n*(n+1)*(5*n-4)/2, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    Table[n(n+1)(5n-4)/2, {n, 0, 40}]
    CoefficientList[Series[x (1+14x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,18,66},50] (* Harvey P. Dale, Jan 11 2015 *)
  • PARI
    a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(n+1)*(5*n-4)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(1 + 14*x)/(1 - x)^4.
For n>0, a(n) = Sum_{i=0..n-1} (n-i)*(15*i+1). More generally, the sequence with the closed form n*(n+1)*(k*n-k+3)/6 is also given by Sum_{i=0..n-1} (n-i)*(k*i+1) for n>0.
a(n) = A104728(A001844(n-1)) for n>0.
Sum_{n>=1} 1/a(n) = (2*sqrt(5*(5 + 2*sqrt(5)))*Pi + 10*sqrt(5)*arccoth(sqrt(5)) + 25*log(5) - 16)/72 = 1.086617842136293176... . - Vaclav Kotesovec, Dec 07 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 4. - Wesley Ivan Hurt, Dec 18 2020
E.g.f.: exp(x)*x*(2 + 16*x + 5*x^2)/2. - Elmo R. Oliveira, Aug 04 2025

A254474 30-gonal numbers: a(n) = n*(14*n-13).

Original entry on oeis.org

0, 1, 30, 87, 172, 285, 426, 595, 792, 1017, 1270, 1551, 1860, 2197, 2562, 2955, 3376, 3825, 4302, 4807, 5340, 5901, 6490, 7107, 7752, 8425, 9126, 9855, 10612, 11397, 12210, 13051, 13920, 14817, 15742, 16695, 17676, 18685, 19722, 20787, 21880
Offset: 0

Views

Author

Luciano Ancora, Apr 04 2015

Keywords

Comments

See comments in A255184.
Also star 15-gonal numbers.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6 (28th row of the table).

Crossrefs

Cf. similar sequences listed in A255184.

Programs

Formula

G.f.: x*(-1 - 27*x)/(-1 + x)^3.
a(n) = A000217(n) + 27*A000217(n-1).
a(n) = A051867(n) + 15*A000217(n-1).
Product_{n>=2} (1 - 1/a(n)) = 14/15. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 14*x^2). - Nikolaos Pantelidis, Feb 05 2023

A255185 26-gonal numbers: a(n) = n*(12*n-11).

Original entry on oeis.org

0, 1, 26, 75, 148, 245, 366, 511, 680, 873, 1090, 1331, 1596, 1885, 2198, 2535, 2896, 3281, 3690, 4123, 4580, 5061, 5566, 6095, 6648, 7225, 7826, 8451, 9100, 9773, 10470, 11191, 11936, 12705, 13498, 14315, 15156, 16021, 16910, 17823, 18760
Offset: 0

Views

Author

Luciano Ancora, Apr 04 2015

Keywords

Comments

See comments in A255184.
Also star 13-gonal number: a(n) = A051865(n) + 13*A000217(n-1).

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6 (24th row of the table).

Crossrefs

Cf. similar sequences listed in A255184.

Programs

  • Magma
    [n*(12*n-11): n in [0..50]]; // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    Table[n (12 n - 11), {n, 50}]
    PolygonalNumber[26,Range[0,50]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{0,1,26},50] (* Harvey P. Dale, Feb 02 2017 *)
  • PARI
    a(n)=n*(12*n-11) \\ Charles R Greathouse IV, Jun 17 2017
    
  • SageMath
    [n*(12*n-11) for n in range(51)] # G. C. Greubel, Jul 12 2024

Formula

G.f.: x*(1 + 23*x)/(1 - x)^3.
a(n) = A000217(n) + 23*A000217(n-1).
Product_{n>=2} (1 - 1/a(n)) = 12/13. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 12*x^2). - Nikolaos Pantelidis, Feb 05 2023

A256646 26-gonal pyramidal numbers: a(n) = n*(n+1)*(8*n-7)/2.

Original entry on oeis.org

0, 1, 27, 102, 250, 495, 861, 1372, 2052, 2925, 4015, 5346, 6942, 8827, 11025, 13560, 16456, 19737, 23427, 27550, 32130, 37191, 42757, 48852, 55500, 62725, 70551, 79002, 88102, 97875, 108345, 119536, 131472, 144177, 157675, 171990, 187146, 203167, 220077
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

See comments in A256645.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (24th row of the table).

Crossrefs

Partial sums of A255185.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(8*n-7)/2: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
    
  • Mathematica
    Table[n (n + 1) (8 n - 7)/2, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 27, 102}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
  • SageMath
    [(8*n-7)*binomial(n+1,2) for n in range(51)] # G. C. Greubel, Jul 12 2024

Formula

G.f.: x*(1 + 23*x)/(1 - x)^4.
a(n) = A000292(n) + 23*A000292(n-1).
a(n) = n*A051866(n) - Sum_{i=0..n-1} A051866(i). - Bruno Berselli, Apr 09 2015
Sum_{n>=1} 1/a(n) = 2*(4*(sqrt(2)+1)*Pi - 4*(sqrt(2)-8)*log(2) + 8*sqrt(2)*log(sqrt(2)+2) - 7)/105. - Amiram Eldar, Jan 10 2022
E.g.f.: (1/2)*x*(2 + 25*x + 8*x^2)*exp(x). - G. C. Greubel, Jul 12 2024

A256647 27-gonal pyramidal numbers: a(n) = n*(n+1)*(25*n-22)/6.

Original entry on oeis.org

0, 1, 28, 106, 260, 515, 896, 1428, 2136, 3045, 4180, 5566, 7228, 9191, 11480, 14120, 17136, 20553, 24396, 28690, 33460, 38731, 44528, 50876, 57800, 65325, 73476, 82278, 91756, 101935, 112840, 124496, 136928, 150161, 164220, 179130, 194916, 211603, 229216
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

See comments in A256645.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (25th row of the table).

Crossrefs

Partial sums of A255186.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(25*n-22)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
  • Mathematica
    Table[n (n + 1) (25 n - 22)/6, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 28, 106}, 40] (* Vincenzo Librandi, Apr 08 2015 *)

Formula

G.f.: x*(1 + 24*x)/(1 - x)^4.
a(n) = A000292(n) + 24*A000292(n-1).
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(6 + 78*x + 25*x^2)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A256648 28-gonal pyramidal numbers: a(n) = n*(n+1)*(26*n-23)/6.

Original entry on oeis.org

0, 1, 29, 110, 270, 535, 931, 1484, 2220, 3165, 4345, 5786, 7514, 9555, 11935, 14680, 17816, 21369, 25365, 29830, 34790, 40271, 46299, 52900, 60100, 67925, 76401, 85554, 95410, 105995, 117335, 129456, 142384, 156145, 170765, 186270, 202686, 220039, 238355
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

See comments in A256645.
This sequence is related to A051867 by a(n) = n*A051867(n) - Sum_{i=0..n-1} A051867(i). - Bruno Berselli, Apr 09 2015

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (26th row of the table).

Crossrefs

Partial sums of A161935.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(26*n-23)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
  • Mathematica
    Table[n (n + 1)(26 n - 23)/6, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 29, 110}, 40] (* Vincenzo Librandi, Apr 08 2015 *)

Formula

G.f.: x*(1 + 25*x)/(1 - x)^4.
a(n) = A000292(n) + 25*A000292(n-1).
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(6 + 81*x + 26*x^2)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A256649 29-gonal pyramidal numbers: a(n) = n*(n+1)*(9*n-8)/2.

Original entry on oeis.org

0, 1, 30, 114, 280, 555, 966, 1540, 2304, 3285, 4510, 6006, 7800, 9919, 12390, 15240, 18496, 22185, 26334, 30970, 36120, 41811, 48070, 54924, 62400, 70525, 79326, 88830, 99064, 110055, 121830, 134416, 147840, 162129, 177310, 193410, 210456, 228475, 247494
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

See comments in A256645.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (27th row of the table).

Crossrefs

Partial sums of A255187.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(9*n-8)/2: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
  • Mathematica
    Table[n (n + 1)(9 n - 8)/2, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 30, 114}, 40] (* Vincenzo Librandi, Apr 08 2015 *)

Formula

G.f.: x*(1 + 26*x)/(1 - x)^4.
a(n) = A000292(n) + 26*A000292(n-1).
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(2 + 28*x + 9*x^2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A256650 30-gonal pyramidal numbers: a(n) = n*(n+1)*(28*n-25)/6.

Original entry on oeis.org

0, 1, 31, 118, 290, 575, 1001, 1596, 2388, 3405, 4675, 6226, 8086, 10283, 12845, 15800, 19176, 23001, 27303, 32110, 37450, 43351, 49841, 56948, 64700, 73125, 82251, 92106, 102718, 114115, 126325, 139376, 153296, 168113, 183855, 200550, 218226, 236911, 256633
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

See comments in A256645.
This sequence is related to A051868 by a(n) = n*A051868(n) - Sum_{i=0..n-1} A051868(i). [Bruno Berselli, Apr 09 2015]

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (28th row of the table).

Crossrefs

Partial sums of A254474.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(28*n-25)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
  • Mathematica
    Table[n (n + 1) (28 n - 25)/6, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 31, 118}, 40] (* Vincenzo Librandi, Apr 08 2015 *)

Formula

G.f.: x*(1 + 27*x)/(1 - x)^4.
a(n) = A000292(n) + 27*A000292(n-1).
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(6 + 87*x + 28*x^2)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
Showing 1-8 of 8 results.