A256648 28-gonal pyramidal numbers: a(n) = n*(n+1)*(26*n-23)/6.
0, 1, 29, 110, 270, 535, 931, 1484, 2220, 3165, 4345, 5786, 7514, 9555, 11935, 14680, 17816, 21369, 25365, 29830, 34790, 40271, 46299, 52900, 60100, 67925, 76401, 85554, 95410, 105995, 117335, 129456, 142384, 156145, 170765, 186270, 202686, 220039, 238355
Offset: 0
References
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (26th row of the table).
Links
- Luciano Ancora, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Polygonal and Pyramidal numbers, Section 3.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n*(n+1)*(26*n-23)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
-
Mathematica
Table[n (n + 1)(26 n - 23)/6, {n, 0, 40}] LinearRecurrence[{4, -6, 4, -1}, {0, 1, 29, 110}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
Formula
G.f.: x*(1 + 25*x)/(1 - x)^4.
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(6 + 81*x + 26*x^2)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
Comments