cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256672 Number of idempotents in the Motzkin monoid of degree n.

Original entry on oeis.org

1, 2, 7, 31, 153, 834, 4839, 29612, 188695, 1243746, 8428597, 58476481, 413893789, 2980489256, 21787216989, 161374041945, 1209258743839, 9155914963702, 69969663242487, 539189056700627
Offset: 0

Views

Author

Nick Loughlin, Apr 07 2015

Keywords

Comments

a(n) is the number of ways of drawing any number of nonintersecting chords joining n (labeled) points on a circle, such that when gluing the second half of one copy to the first half of the other so that each point k along the intersection is glued to n+1-k, the result is homotopic to the original.
a(n+1) > a(n) for every n.
The structure of the Motzkin monoid (and particularly its idempotents and some associated orderings) is governed intimately by the combinatorics of so-called Motzkin paths and Motzkin words, which are related to Dyck paths and words respectively by insertion of punctuation into the words, or marking/coloring subpaths.
Bounded above by A026945, strictly for n > 1. Bounded below by the square of A001006, strictly for n > 1.

Examples

			There is one empty graph, which is idempotent under the composition, hence a(0)=1.
There are two on 1 pair of points, the clique and the discrete graph; both are idempotents under the composition, hence a(1)=2.
		

Crossrefs

Extensions

a(9)-a(13) corrected and a(14)-a(16) computed using the Semigroups package for GAP added by James Mitchell, Apr 12 2016
a(17)-a(19) added by James Mitchell, Apr 01 2017