cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256693 From fifth root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fifth power is zeta function; sequence gives denominator of b(n).

Original entry on oeis.org

1, 5, 5, 25, 5, 25, 5, 125, 25, 25, 5, 125, 5, 25, 25, 625, 5, 125, 5, 125, 25, 25, 5, 625, 25, 25, 125, 125, 5, 125, 5, 15625, 25, 25, 25, 625, 5, 25, 25, 625, 5, 125, 5, 125, 125, 25, 5, 3125, 25, 125, 25, 125, 5, 625, 25, 625, 25, 25, 5, 625, 5, 25, 125, 78125, 25, 125, 5, 125, 25, 125, 5, 3125, 5, 25, 125, 125, 25, 125, 5, 3125, 625, 25, 5, 625, 25, 25, 25, 625, 5, 625, 25, 125, 25, 25, 25, 78125, 5, 125, 125, 625
Offset: 1

Views

Author

Wolfgang Hintze, Apr 08 2015

Keywords

Comments

Dirichlet g.f. of A256692(n)/A256693(n) is (zeta(x))^(1/5).
Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...
In general, for m > 0, if Dirichlet g.f. is zeta(s)^m, then Sum_{j=1..n} a(j) ~ n*log(n)^(m-1)/Gamma(m) * (1 + (m-1)*(m*gamma - 1)/log(n)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 04 2025

Examples

			b(1), b(2), ... =
1, 1/5, 1/5, 3/25, 1/5, 1/25, 1/5, 11/125, 3/25, 1/25, 1/5, 3/125, 1/5, 1/25, 1/25, 44/625, 1/5, 3/125, 1/5, 3/125, 1/25, 1/25, 1/5, 11/625
		

Crossrefs

Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Programs

  • Mathematica
    k = 5;
    c[1, n_] = b[n];
    c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]
    nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];
    sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
    t = Table[b[n], {n, 1, nn}] /. sol[[1]];
    num = Numerator[t] (* A256692 *)
    den = Denominator[t] (* A256693 *)
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-X)^(1/5))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025

Formula

with k = 5;
zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = 1 for b(m);
a(n) = denominator(b(n)).
Sum_{j=1..n} A256692(j)/A256693(j) ~ n / (Gamma(1/5) * log(n)^(4/5)) * (1 + (4*(1 - gamma/5))/(5*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 04 2025