A256695 Integer areas A of integer-sided triangles (a, b, c) such that the area of the triangle (a+b, a+c, b+c) is also an integer.
12, 48, 108, 192, 300, 432, 588, 768, 972, 1008, 1200, 1452, 1728, 2028, 2352, 2448, 2520, 2700, 2772, 3060, 3072, 3468, 3888, 4032, 4332, 4800, 5292, 5808, 6348, 6912, 7500, 8112, 8748, 9072, 9408, 9792, 10080, 10092, 10800, 11088, 11532, 11628, 12240, 12288
Offset: 1
Keywords
Examples
a(1) = 12 because, for (a,b,c) = (5, 5, 8) => s = (5+5+8)/2 = 9, and A = sqrt(9(9-5)(9-5)(9-8)) = sqrt(144) = 12 and the triangle (5+5, 5+8, 5+8) = (10, 13, 13)=> s1 = (10+13+13)/2 = 18, and A1 = sqrt(18(18-10)(18-13)(18-13)) = sqrt(3600) = 60 is an integer.
Programs
-
Mathematica
nn=1000;lst={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s(s-a)(s-b)(s-c);u=a+b;v=a+c;w=b+c;s1=(u+v+w)/2;area3=s1(s1-u)(s1-v)(s1-w);If[area2>0&&area3>0&&IntegerQ[Sqrt[area2]]&&IntegerQ[Sqrt[area3]], AppendTo[lst,Sqrt[area2]]]],{a,nn},{b,a},{c,b}];Union[lst]
Comments