cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256695 Integer areas A of integer-sided triangles (a, b, c) such that the area of the triangle (a+b, a+c, b+c) is also an integer.

Original entry on oeis.org

12, 48, 108, 192, 300, 432, 588, 768, 972, 1008, 1200, 1452, 1728, 2028, 2352, 2448, 2520, 2700, 2772, 3060, 3072, 3468, 3888, 4032, 4332, 4800, 5292, 5808, 6348, 6912, 7500, 8112, 8748, 9072, 9408, 9792, 10080, 10092, 10800, 11088, 11532, 11628, 12240, 12288
Offset: 1

Views

Author

Michel Lagneau, Apr 08 2015

Keywords

Comments

The areas of the primitive triangles are 12, 2520, 2772, 3060, 4032, 5808, 9072, 11088, 11628, 17136, 24948, 41580, ...
The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2.
The sequence A135453 (numbers of the form 12*n^2) is included in the sequence because a(1) = 12 is a primitive triangle of the subsequence k^2*a(1), k=1,2,3,...
The following table gives the first values (A, A', a, b, c) where A is the integer area of the triangle (a, b, c), A' is the integer area of the triangle (a+b, a+c, b+c).
+-------+--------+------+------+------+
| A | A' | a | b | c |
+-------+--------+------+------+------+
| 12 | 60 | 5 | 5 | 8 |
| 48 | 240 | 10 | 10 | 16 |
| 108 | 540 | 15 | 15 | 24 |
| 192 | 960 | 20 | 20 | 32 |
| 300 | 1500 | 25 | 25 | 40 |
| 432 | 2160 | 30 | 30 | 48 |
| 588 | 2940 | 35 | 35 | 56 |
| 768 | 3840 | 40 | 40 | 64 |
| 972 | 4860 | 45 | 45 | 72 |
+-------+--------+------+------+------+
We find a majority of isosceles triangles, but there is a subsequence of non-isosceles triangles with areas 2520, 3060, 10080, 11088, ...
+--------+----------+-------+-------+-------+
| A | A' | a | b | c |
+--------+----------+-------+-------+-------+
| 2520 | 18270 | 29 | 174 | 175 |
| 3060 | 33150 | 39 | 221 | 250 |
| 10080 | 73080 | 58 | 348 | 350 |
| 11088 | 64350 | 150 | 169 | 275 |
| 12240 | 12240 | 78 | 442 | 500 |
| 17136 | 92820 | 168 | 221 | 325 |
| 41580 | 183150 | 250 | 333 | 407 |
+--------+----------+-------+-------+-------+

Examples

			a(1) = 12 because, for (a,b,c) = (5, 5, 8) => s = (5+5+8)/2 = 9, and
A = sqrt(9(9-5)(9-5)(9-8)) = sqrt(144) = 12 and the triangle (5+5, 5+8, 5+8) = (10, 13, 13)=> s1 = (10+13+13)/2 = 18, and A1 = sqrt(18(18-10)(18-13)(18-13)) = sqrt(3600) = 60 is an integer.
		

Crossrefs

Programs

  • Mathematica
    nn=1000;lst={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s(s-a)(s-b)(s-c);u=a+b;v=a+c;w=b+c;s1=(u+v+w)/2;area3=s1(s1-u)(s1-v)(s1-w);If[area2>0&&area3>0&&IntegerQ[Sqrt[area2]]&&IntegerQ[Sqrt[area3]], AppendTo[lst,Sqrt[area2]]]],{a,nn},{b,a},{c,b}];Union[lst]