A256779 Decimal expansion of the generalized Euler constant gamma(1,5).
7, 3, 5, 9, 2, 0, 3, 9, 6, 8, 3, 1, 6, 1, 7, 5, 8, 4, 1, 8, 9, 2, 8, 9, 7, 2, 5, 8, 4, 4, 7, 5, 2, 8, 9, 3, 0, 5, 9, 9, 9, 7, 3, 8, 3, 9, 8, 7, 6, 2, 5, 0, 1, 7, 6, 5, 2, 6, 4, 2, 1, 5, 4, 5, 4, 3, 4, 8, 9, 1, 5, 3, 2, 7, 6, 7, 9, 2, 3, 7, 7, 5, 8, 3, 2, 8, 8, 7, 8, 9, 2, 4, 5, 2, 7, 8, 1, 5, 0, 3, 2, 2, 4, 8, 8
Offset: 0
Examples
0.735920396831617584189289725844752893059997383987625...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975), p. 134.
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/5 + Pi(R)/10*Sqrt(1 + 2/Sqrt(5)) + Log(5)/20 + Sqrt(5)/10*Log((1 + Sqrt(5))/2); // G. C. Greubel, Aug 28 2018
-
Mathematica
RealDigits[-Log[5]/5 - PolyGamma[1/5]/5, 10, 105] // First
-
PARI
Euler/5 + Pi/10*sqrt(1 + 2/sqrt(5)) + log(5)/20 + sqrt(5)/10*log((1 + sqrt(5))/2) \\ Michel Marcus, Apr 10 2015
Formula
Equals EulerGamma/5 + Pi/10*sqrt(1 + 2/sqrt(5)) + log(5)/20 + sqrt(5)/10*log((1 + sqrt(5))/2).
Equals Sum_{n>=0} (1/(5n+1) - 2/5*arctanh(5/(10n+7))).