A256845 Decimal expansion of the generalized Euler constant gamma(2,4).
1, 4, 4, 3, 0, 3, 9, 1, 6, 2, 2, 5, 3, 8, 3, 2, 1, 5, 1, 5, 1, 6, 2, 8, 0, 2, 2, 5, 2, 0, 6, 0, 0, 6, 0, 7, 7, 6, 0, 5, 3, 9, 8, 3, 3, 9, 8, 4, 9, 8, 0, 8, 9, 9, 7, 0, 1, 4, 4, 1, 8, 0, 8, 7, 2, 1, 2, 1, 6, 9, 3, 1, 6, 9, 4, 4, 1, 6, 1, 6, 7, 7, 3, 4, 2, 3, 6, 7, 6, 5, 8, 2, 2, 9, 3, 6, 6, 8, 7, 3, 7, 8, 6, 5, 7, 8, 6
Offset: 0
Examples
0.1443039162253832151516280225206006077605398339849808997...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975) p. 134.
Crossrefs
Programs
-
Magma
R:= RealField(100); EulerGamma(R)/4; // G. C. Greubel, Aug 28 2018
-
Mathematica
RealDigits[EulerGamma/4, 10, 107] // First
-
PARI
default(realprecision, 100); Euler/4 \\ G. C. Greubel, Aug 28 2018
Formula
-log(4)/4 - PolyGamma(1/2)/4 = EulerGamma/4
From Amiram Eldar, Jul 21 2020: (Start)
Equals -Integral_{x=0..oo} e^(-x^2)*x*log(x) dx.
Equals Integral_{x=0..oo} (e^(-x^4) - e^(-x^2))/x dx. (End)