cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A256843 Decimal expansion of the generalized Euler constant gamma(2,3).

Original entry on oeis.org

0, 7, 3, 2, 0, 7, 3, 7, 5, 7, 0, 6, 1, 5, 9, 5, 9, 3, 6, 6, 9, 0, 3, 1, 8, 5, 9, 9, 0, 7, 5, 2, 9, 1, 3, 9, 0, 7, 4, 6, 2, 3, 8, 3, 0, 2, 6, 8, 3, 0, 9, 3, 4, 5, 6, 2, 9, 3, 9, 0, 6, 4, 4, 6, 6, 9, 8, 5, 1, 0, 9, 4, 2, 7, 4, 5, 9, 7, 4, 0, 4, 1, 7, 7, 2, 3, 0, 8, 1, 5, 5, 3, 0, 8, 6, 0, 9, 0, 3, 1, 6, 0, 1, 6, 8, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			0.07320737570615959366903185990752913907462383026830934562939...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma), A002391, A200064.
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12).
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/3 - Pi(R)/(6*Sqrt(3)) + Log(3)/6; // G. C. Greubel, Aug 28 2018
  • Mathematica
    Join[{0}, RealDigits[-Log[3]/3 - PolyGamma[2/3]/3, 10, 105] // First]
  • PARI
    default(realprecision, 100); Euler/3 - Pi/(6*sqrt(3)) + log(3)/6 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals EulerGamma/3 - Pi/(6*sqrt(3)) + log(3)/6.
Equals -(psi(2/3) + log(3))/3 = (A200064 - A002391)/3. - Amiram Eldar, Jan 07 2024

A256846 Decimal expansion of the generalized Euler constant gamma(3,4) (negated).

Original entry on oeis.org

0, 7, 5, 1, 0, 8, 3, 7, 0, 3, 3, 3, 3, 5, 4, 6, 1, 2, 3, 0, 1, 8, 9, 4, 3, 7, 0, 0, 2, 4, 7, 9, 3, 1, 1, 0, 7, 4, 5, 2, 3, 1, 3, 0, 7, 3, 4, 6, 8, 4, 3, 5, 1, 4, 3, 9, 0, 2, 5, 6, 2, 6, 2, 9, 4, 3, 9, 1, 1, 7, 1, 3, 5, 9, 8, 9, 3, 6, 2, 7, 8, 1, 9, 2, 8, 0, 1, 7, 5, 5, 5, 9, 5, 7, 2, 3, 2, 7, 4, 2, 3, 3, 6, 1, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.07510837033335461230189437002479311074523130734684351439...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/4 - Pi(R)/8 - Log(4)/4 + Log(8)/4; // G. C. Greubel, Aug 28 2018
  • Mathematica
    Join[{0}, RealDigits[-Log[4]/4 - PolyGamma[3/4]/4, 10, 104] // First ]
  • PARI
    default(realprecision, 100); Euler/4 - Pi/8 - log(4)/4 + log(8)/4 \\ G. C. Greubel, Aug 28 2018
    

Formula

-log(4)/4 - PolyGamma(3/4)/4 = EulerGamma/4 - Pi/8 - log(4)/4 + log(8)/4

A256848 Decimal expansion of the generalized Euler constant gamma(3,5) (negated).

Original entry on oeis.org

0, 1, 3, 7, 6, 3, 7, 3, 9, 7, 0, 8, 1, 8, 1, 9, 9, 1, 9, 6, 8, 0, 1, 9, 0, 7, 6, 8, 8, 3, 9, 9, 1, 1, 3, 9, 6, 0, 3, 0, 1, 3, 4, 1, 9, 9, 1, 5, 7, 8, 2, 1, 0, 2, 7, 2, 9, 1, 9, 2, 5, 2, 5, 6, 4, 2, 6, 0, 2, 0, 2, 9, 2, 9, 3, 3, 1, 1, 0, 5, 9, 7, 1, 1, 3, 5, 8, 2, 8, 2, 0, 7, 4, 6, 8, 0, 1, 5, 8, 1, 3, 9, 8, 7, 7, 9, 9, 8, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.013763739708181991968019076883991139603013419915782102729...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/5 + Pi(R)/(10*Sqrt(2*(5+Sqrt(5)))) - Pi(R)/(2*Sqrt(10*(5+Sqrt(5)))) + Log(5)/20 + Log((5-Sqrt(5))/(5+Sqrt(5)))/(4*Sqrt(5)); // G. C. Greubel, Aug 28 2018
  • Mathematica
    Join[{0}, RealDigits[-Log[5]/5 - PolyGamma[3/5]/5, 10, 108] // First  ]
  • PARI
    default(realprecision, 100); Euler/5 + Pi/(10*sqrt(2*(5+sqrt(5)))) - Pi/(2*sqrt(10*(5+sqrt(5)))) + log(5)/20 + log((5-sqrt(5))/(5+sqrt(5)))/(4*sqrt(5)) \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals -log(5)/5 - PolyGamma(3/5)/5.
Equals EulerGamma/5 + Pi/(10*sqrt(2*(5+sqrt(5)))) - Pi/(2*sqrt(10*(5+sqrt(5)))) + log(5)/20 + log((5-sqrt(5))/(5+sqrt(5)))/(4*sqrt(5)).

A256849 Decimal expansion of the generalized Euler constant gamma(4,5) (negated).

Original entry on oeis.org

1, 2, 8, 8, 8, 5, 8, 6, 9, 1, 4, 5, 5, 9, 2, 3, 8, 3, 0, 4, 1, 8, 9, 2, 3, 4, 0, 0, 1, 3, 8, 7, 0, 4, 4, 3, 9, 7, 8, 2, 8, 8, 1, 7, 2, 9, 1, 4, 6, 5, 8, 9, 7, 8, 5, 6, 0, 5, 6, 7, 4, 1, 9, 4, 4, 5, 8, 4, 3, 5, 5, 6, 0, 6, 4, 3, 9, 4, 7, 5, 2, 0, 6, 4, 7, 5, 1, 4, 4, 3, 7, 7, 0, 6, 5, 1, 5, 1, 1, 7, 3, 3, 4, 7, 3, 8, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.12888586914559238304189234001387044397828817291465897856 ...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/5 - Pi(R)/(10*Sqrt(2*(5-Sqrt(5)))) - Pi(R)/(2*Sqrt(10*(5-Sqrt(5)))) + Log(5)/20 - Log(5-Sqrt(5))/(4*Sqrt(5)) + Log(5+Sqrt(5))/( 4*Sqrt(5)); // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[-Log[5]/5 - PolyGamma[4/5]/5, 10, 107] // First
  • PARI
    default(realprecision, 100); Euler/5 - Pi/(10*sqrt(2*(5-sqrt(5)))) - Pi/(2*sqrt(10*(5-sqrt(5)))) + log(5)/20 - log(5-sqrt(5))/(4*sqrt(5)) + log(5+sqrt(5))/(4*sqrt(5)) \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals -log(5)/5 - PolyGamma(4/5)/5.
Equals EulerGamma/5 - Pi/(10*sqrt(2*(5-sqrt(5)))) - Pi/(2*sqrt(10*(5-sqrt(5)))) + log(5)/20 - log(5-sqrt(5))/(4*sqrt(5)) + log(5+sqrt(5))/(4*sqrt(5)).

A256844 Decimal expansion of the generalized Euler constant gamma(3,3) (negated).

Original entry on oeis.org

1, 7, 3, 7, 9, 8, 8, 7, 4, 5, 8, 8, 8, 5, 8, 9, 4, 3, 5, 9, 6, 2, 4, 4, 3, 8, 2, 2, 8, 0, 0, 4, 1, 0, 9, 1, 2, 0, 1, 7, 7, 7, 0, 7, 3, 9, 6, 0, 9, 4, 1, 9, 5, 0, 9, 7, 6, 3, 0, 9, 0, 3, 2, 9, 1, 7, 5, 4, 2, 1, 8, 8, 8, 1, 3, 6, 4, 8, 0, 9, 8, 6, 4, 5, 5, 5, 6, 2, 3, 0, 5, 0, 7, 3, 2, 8, 4, 4, 6, 4, 2, 4, 4, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.1737988745888589435962443822800410912017770739609419509763...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/3 - Log(3)/3; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/3 - Log[3]/3, 10, 105] // First
  • PARI
    default(realprecision, 100); Euler/3 - log(3)/3 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals EulerGamma/3 - log(3)/3.

A256847 Decimal expansion of the generalized Euler constant gamma(4,4) (negated).

Original entry on oeis.org

2, 0, 2, 2, 6, 9, 6, 7, 4, 0, 5, 4, 5, 8, 9, 4, 3, 9, 5, 5, 6, 9, 8, 8, 0, 3, 8, 2, 0, 8, 4, 8, 7, 6, 7, 6, 2, 7, 7, 2, 1, 0, 2, 3, 3, 1, 9, 5, 1, 4, 6, 7, 2, 7, 3, 5, 8, 8, 9, 8, 1, 9, 6, 0, 2, 5, 4, 7, 9, 8, 7, 9, 2, 9, 0, 4, 3, 1, 1, 9, 0, 0, 6, 8, 6, 9, 4, 8, 9, 7, 6, 7, 5, 2, 7, 2, 6, 5, 6, 3, 9, 2, 3, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.202269674054589439556988038208487676277210233195146727358898...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) - Log(4))/4; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/4 - Log[4]/4, 10, 104] // First
  • PARI
    default(realprecision, 100); (Euler - log(4))/4 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals (EulerGamma - log(4))/4.

A256850 Decimal expansion of the generalized Euler constant gamma(5,5) (negated).

Original entry on oeis.org

2, 0, 6, 4, 4, 4, 4, 4, 9, 5, 0, 6, 5, 1, 3, 5, 0, 2, 7, 9, 8, 8, 4, 9, 4, 4, 8, 6, 2, 8, 7, 5, 7, 0, 4, 1, 6, 9, 6, 6, 8, 8, 4, 0, 3, 6, 6, 5, 7, 1, 8, 8, 2, 4, 6, 2, 1, 3, 7, 6, 1, 3, 1, 3, 1, 7, 8, 6, 2, 2, 5, 2, 1, 8, 5, 9, 9, 8, 6, 1, 8, 7, 3, 8, 6, 3, 7, 3, 6, 2, 9, 6, 0, 2, 8, 6, 5, 7, 2, 2, 5, 7
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.20644444950651350279884944862875704169668840366571882462...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) - Log(5))/5; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/5 - Log[5]/5, 10, 102] // First
  • PARI
    default(realprecision, 100); (Euler - log(5))/5 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals (EulerGamma - log(5))/5.

A374774 Decimal expansion of (2 + gamma - log(Pi))/4.

Original entry on oeis.org

3, 5, 8, 1, 2, 1, 4, 4, 4, 7, 6, 3, 0, 3, 3, 1, 7, 1, 6, 1, 5, 7, 7, 1, 1, 8, 4, 6, 8, 2, 3, 3, 5, 9, 2, 9, 8, 4, 8, 7, 1, 6, 1, 3, 0, 7, 5, 6, 1, 5, 3, 0, 0, 6, 8, 2, 3, 0, 3, 6, 0, 4, 0, 8, 5, 3, 1, 8, 2, 4, 8, 9, 2, 2, 3, 2, 0, 9, 6, 4, 7, 7, 8, 8, 3, 3, 0, 9, 4, 8, 2, 5, 4, 0, 6, 4, 2, 6, 0, 4
Offset: 0

Views

Author

Stefano Spezia, Jul 19 2024

Keywords

Examples

			0.3581214447630331716157711846823359298487161...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2+EulerGamma-Log[Pi])/4,10,100][[1]]

Formula

Equals A374775/2.

A374776 Decimal expansion of (2 + gamma - log(Pi/4))/4.

Original entry on oeis.org

7, 0, 4, 6, 9, 5, 0, 3, 5, 0, 4, 3, 0, 0, 5, 8, 2, 6, 3, 2, 4, 3, 8, 7, 2, 4, 5, 4, 1, 1, 4, 2, 4, 2, 1, 3, 8, 8, 6, 4, 6, 6, 1, 9, 7, 9, 3, 6, 2, 8, 0, 6, 3, 3, 8, 8, 3, 3, 7, 6, 0, 4, 5, 5, 9, 9, 8, 7, 9, 3, 0, 0, 2, 0, 8, 0, 5, 7, 0, 0, 5, 5, 9, 1, 2, 6, 2, 6, 1, 1, 7, 5, 2, 2, 7, 3, 6, 0, 4, 2
Offset: 0

Views

Author

Stefano Spezia, Jul 19 2024

Keywords

Examples

			0.7046950350430058263243872454114242138864661979...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2+EulerGamma-Log[Pi/4])/4,10,100][[1]]
Showing 1-9 of 9 results.