cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A001899 Number of divisors of n of the form 5k+4; a(0) = 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 2, 0, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 2, 1, 0, 0, 2, 1, 0, 0, 1, 0, 2, 0, 2, 1, 1, 1, 1, 0, 0, 1, 2, 0, 0, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 1, 1, 1, 1, 0, 0, 3, 0, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[d = Divisors[n]; Length[Select[d, Mod[#, 5] == 4 &]], {n, 100}]] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    a(n) = if (n==0, 0, sumdiv(n, d, (d % 5)==4)); \\ Michel Marcus, Feb 28 2021

Formula

G.f.: Sum_{n>=0} x^(5*n+4)/(1 - x^(5*n+4)).
G.f.: Sum_{k>=1} x^(4*k)/(1 - x^(5*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(4,5) - (1 - gamma)/5 = A256849 - (1 - A001620)/5 = -0.213442... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

Extensions

Better definition from Michael Somos, Aug 31 2004

A256843 Decimal expansion of the generalized Euler constant gamma(2,3).

Original entry on oeis.org

0, 7, 3, 2, 0, 7, 3, 7, 5, 7, 0, 6, 1, 5, 9, 5, 9, 3, 6, 6, 9, 0, 3, 1, 8, 5, 9, 9, 0, 7, 5, 2, 9, 1, 3, 9, 0, 7, 4, 6, 2, 3, 8, 3, 0, 2, 6, 8, 3, 0, 9, 3, 4, 5, 6, 2, 9, 3, 9, 0, 6, 4, 4, 6, 6, 9, 8, 5, 1, 0, 9, 4, 2, 7, 4, 5, 9, 7, 4, 0, 4, 1, 7, 7, 2, 3, 0, 8, 1, 5, 5, 3, 0, 8, 6, 0, 9, 0, 3, 1, 6, 0, 1, 6, 8, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			0.07320737570615959366903185990752913907462383026830934562939...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma), A002391, A200064.
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12).
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/3 - Pi(R)/(6*Sqrt(3)) + Log(3)/6; // G. C. Greubel, Aug 28 2018
  • Mathematica
    Join[{0}, RealDigits[-Log[3]/3 - PolyGamma[2/3]/3, 10, 105] // First]
  • PARI
    default(realprecision, 100); Euler/3 - Pi/(6*sqrt(3)) + log(3)/6 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals EulerGamma/3 - Pi/(6*sqrt(3)) + log(3)/6.
Equals -(psi(2/3) + log(3))/3 = (A200064 - A002391)/3. - Amiram Eldar, Jan 07 2024

A256845 Decimal expansion of the generalized Euler constant gamma(2,4).

Original entry on oeis.org

1, 4, 4, 3, 0, 3, 9, 1, 6, 2, 2, 5, 3, 8, 3, 2, 1, 5, 1, 5, 1, 6, 2, 8, 0, 2, 2, 5, 2, 0, 6, 0, 0, 6, 0, 7, 7, 6, 0, 5, 3, 9, 8, 3, 3, 9, 8, 4, 9, 8, 0, 8, 9, 9, 7, 0, 1, 4, 4, 1, 8, 0, 8, 7, 2, 1, 2, 1, 6, 9, 3, 1, 6, 9, 4, 4, 1, 6, 1, 6, 7, 7, 3, 4, 2, 3, 6, 7, 6, 5, 8, 2, 2, 9, 3, 6, 6, 8, 7, 3, 7, 8, 6, 5, 7, 8, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			0.1443039162253832151516280225206006077605398339849808997...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    R:= RealField(100); EulerGamma(R)/4; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/4, 10, 107] // First
  • PARI
    default(realprecision, 100); Euler/4 \\ G. C. Greubel, Aug 28 2018
    

Formula

-log(4)/4 - PolyGamma(1/2)/4 = EulerGamma/4
From Amiram Eldar, Jul 21 2020: (Start)
Equals -Integral_{x=0..oo} e^(-x^2)*x*log(x) dx.
Equals Integral_{x=0..oo} (e^(-x^4) - e^(-x^2))/x dx. (End)

A256846 Decimal expansion of the generalized Euler constant gamma(3,4) (negated).

Original entry on oeis.org

0, 7, 5, 1, 0, 8, 3, 7, 0, 3, 3, 3, 3, 5, 4, 6, 1, 2, 3, 0, 1, 8, 9, 4, 3, 7, 0, 0, 2, 4, 7, 9, 3, 1, 1, 0, 7, 4, 5, 2, 3, 1, 3, 0, 7, 3, 4, 6, 8, 4, 3, 5, 1, 4, 3, 9, 0, 2, 5, 6, 2, 6, 2, 9, 4, 3, 9, 1, 1, 7, 1, 3, 5, 9, 8, 9, 3, 6, 2, 7, 8, 1, 9, 2, 8, 0, 1, 7, 5, 5, 5, 9, 5, 7, 2, 3, 2, 7, 4, 2, 3, 3, 6, 1, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.07510837033335461230189437002479311074523130734684351439...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/4 - Pi(R)/8 - Log(4)/4 + Log(8)/4; // G. C. Greubel, Aug 28 2018
  • Mathematica
    Join[{0}, RealDigits[-Log[4]/4 - PolyGamma[3/4]/4, 10, 104] // First ]
  • PARI
    default(realprecision, 100); Euler/4 - Pi/8 - log(4)/4 + log(8)/4 \\ G. C. Greubel, Aug 28 2018
    

Formula

-log(4)/4 - PolyGamma(3/4)/4 = EulerGamma/4 - Pi/8 - log(4)/4 + log(8)/4

A256848 Decimal expansion of the generalized Euler constant gamma(3,5) (negated).

Original entry on oeis.org

0, 1, 3, 7, 6, 3, 7, 3, 9, 7, 0, 8, 1, 8, 1, 9, 9, 1, 9, 6, 8, 0, 1, 9, 0, 7, 6, 8, 8, 3, 9, 9, 1, 1, 3, 9, 6, 0, 3, 0, 1, 3, 4, 1, 9, 9, 1, 5, 7, 8, 2, 1, 0, 2, 7, 2, 9, 1, 9, 2, 5, 2, 5, 6, 4, 2, 6, 0, 2, 0, 2, 9, 2, 9, 3, 3, 1, 1, 0, 5, 9, 7, 1, 1, 3, 5, 8, 2, 8, 2, 0, 7, 4, 6, 8, 0, 1, 5, 8, 1, 3, 9, 8, 7, 7, 9, 9, 8, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.013763739708181991968019076883991139603013419915782102729...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/5 + Pi(R)/(10*Sqrt(2*(5+Sqrt(5)))) - Pi(R)/(2*Sqrt(10*(5+Sqrt(5)))) + Log(5)/20 + Log((5-Sqrt(5))/(5+Sqrt(5)))/(4*Sqrt(5)); // G. C. Greubel, Aug 28 2018
  • Mathematica
    Join[{0}, RealDigits[-Log[5]/5 - PolyGamma[3/5]/5, 10, 108] // First  ]
  • PARI
    default(realprecision, 100); Euler/5 + Pi/(10*sqrt(2*(5+sqrt(5)))) - Pi/(2*sqrt(10*(5+sqrt(5)))) + log(5)/20 + log((5-sqrt(5))/(5+sqrt(5)))/(4*sqrt(5)) \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals -log(5)/5 - PolyGamma(3/5)/5.
Equals EulerGamma/5 + Pi/(10*sqrt(2*(5+sqrt(5)))) - Pi/(2*sqrt(10*(5+sqrt(5)))) + log(5)/20 + log((5-sqrt(5))/(5+sqrt(5)))/(4*sqrt(5)).

A256844 Decimal expansion of the generalized Euler constant gamma(3,3) (negated).

Original entry on oeis.org

1, 7, 3, 7, 9, 8, 8, 7, 4, 5, 8, 8, 8, 5, 8, 9, 4, 3, 5, 9, 6, 2, 4, 4, 3, 8, 2, 2, 8, 0, 0, 4, 1, 0, 9, 1, 2, 0, 1, 7, 7, 7, 0, 7, 3, 9, 6, 0, 9, 4, 1, 9, 5, 0, 9, 7, 6, 3, 0, 9, 0, 3, 2, 9, 1, 7, 5, 4, 2, 1, 8, 8, 8, 1, 3, 6, 4, 8, 0, 9, 8, 6, 4, 5, 5, 5, 6, 2, 3, 0, 5, 0, 7, 3, 2, 8, 4, 4, 6, 4, 2, 4, 4, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.1737988745888589435962443822800410912017770739609419509763...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/3 - Log(3)/3; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/3 - Log[3]/3, 10, 105] // First
  • PARI
    default(realprecision, 100); Euler/3 - log(3)/3 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals EulerGamma/3 - log(3)/3.

A256847 Decimal expansion of the generalized Euler constant gamma(4,4) (negated).

Original entry on oeis.org

2, 0, 2, 2, 6, 9, 6, 7, 4, 0, 5, 4, 5, 8, 9, 4, 3, 9, 5, 5, 6, 9, 8, 8, 0, 3, 8, 2, 0, 8, 4, 8, 7, 6, 7, 6, 2, 7, 7, 2, 1, 0, 2, 3, 3, 1, 9, 5, 1, 4, 6, 7, 2, 7, 3, 5, 8, 8, 9, 8, 1, 9, 6, 0, 2, 5, 4, 7, 9, 8, 7, 9, 2, 9, 0, 4, 3, 1, 1, 9, 0, 0, 6, 8, 6, 9, 4, 8, 9, 7, 6, 7, 5, 2, 7, 2, 6, 5, 6, 3, 9, 2, 3, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.202269674054589439556988038208487676277210233195146727358898...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) - Log(4))/4; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/4 - Log[4]/4, 10, 104] // First
  • PARI
    default(realprecision, 100); (Euler - log(4))/4 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals (EulerGamma - log(4))/4.

A256850 Decimal expansion of the generalized Euler constant gamma(5,5) (negated).

Original entry on oeis.org

2, 0, 6, 4, 4, 4, 4, 4, 9, 5, 0, 6, 5, 1, 3, 5, 0, 2, 7, 9, 8, 8, 4, 9, 4, 4, 8, 6, 2, 8, 7, 5, 7, 0, 4, 1, 6, 9, 6, 6, 8, 8, 4, 0, 3, 6, 6, 5, 7, 1, 8, 8, 2, 4, 6, 2, 1, 3, 7, 6, 1, 3, 1, 3, 1, 7, 8, 6, 2, 2, 5, 2, 1, 8, 5, 9, 9, 8, 6, 1, 8, 7, 3, 8, 6, 3, 7, 3, 6, 2, 9, 6, 0, 2, 8, 6, 5, 7, 2, 2, 5, 7
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			-0.20644444950651350279884944862875704169668840366571882462...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma),
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) - Log(5))/5; // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[EulerGamma/5 - Log[5]/5, 10, 102] // First
  • PARI
    default(realprecision, 100); (Euler - log(5))/5 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals (EulerGamma - log(5))/5.

A218447 a(n) = Sum_{k>=0} floor(n/(5*k + 4)).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 9, 9, 9, 11, 11, 11, 12, 14, 15, 15, 15, 16, 16, 17, 17, 19, 19, 20, 21, 22, 22, 23, 23, 25, 26, 26, 26, 28, 29, 29, 29, 30, 30, 32, 32, 34, 35, 36, 37, 38, 38, 38, 39, 41, 41, 41, 41, 43, 44, 45, 45, 48, 48, 49, 49, 51, 51, 52, 53, 54
Offset: 0

Views

Author

Benoit Cloitre, Oct 28 2012

Keywords

Crossrefs

Partial sums of A001899.

Programs

  • Maple
    g:= n -> nops(select(t -> t mod 5 = 4, numtheory:-divisors(n))):
    g(0):= 0:
    ListTools:-PartialSums(map(g, [$0..100])); # Robert Israel, Apr 29 2021
  • Maxima
    A218447[n]:=sum(floor(n/(5*k+4)),k,0,n)$
    makelist(A218447[n],n,0,80); /* Martin Ettl, Oct 20 2012 */
  • PARI
    a(n)=sum(k=0,n,(n\(5*k+4)))
    

Formula

a(n) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(4,5) - (1 - gamma)/5 = A256849 - (1 - A001620)/5 = -0.213442... (Smith and Subbarao, 1981). - Amiram Eldar, Apr 20 2025
Showing 1-9 of 9 results.