cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001876 Number of divisors of n of the form 5k+1; a(0)=0.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 4, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 1
Offset: 0

Views

Author

Keywords

Crossrefs

For numbers of divisors of n of the form 5k+i (i=1, 2, 3, 4) see: this sequence, A001877, A001878, A001899.

Programs

  • Mathematica
    CoefficientList[ Series[ Together[ Sum[ x^n/(1 - x^(5n)), {n, 110}]], {x, 0, 110}], x] (* Robert G. Wilson v, Jan 31 2011 *)
    a[n_] := DivisorSum[n, 1 &, Mod[#, 5] == 1 &]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    a(n) = if(n==0,0, sumdiv(n, d, (d % 5) == 1)); \\ Michel Marcus, Feb 25 2021

Formula

G.f.: Sum_{n>=0} x^(5n+1)/(1-x^(5n+1)).
G.f.: Sum_{n>=1} x^n/(1-x^(5*n)). - Joerg Arndt, Jan 30 2011
Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,5) - (1 - gamma)/5 = A256779 - (1 - A001620)/5 = 0.651363... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A001877 Number of divisors of n of the form 5k+2; a(0) = 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 2, 0, 1, 1, 1, 0, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 1, 0, 2, 0, 2, 1, 2, 1, 1, 0, 1, 0, 3, 0, 2, 0, 1, 1, 2, 1, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 3, 0, 2, 0, 1, 2, 1, 0, 1, 1, 2, 0, 4, 1, 1, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{n>=0} x^(5n+2)/(1-x^(5n+2)).
G.f.: Sum_{n>=1} x^(2*n)/(1-x^(5*n)). - Joerg Arndt, Jan 30 2011
Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(2,5) - (1 - gamma)/5 = A256780 - (1 - A001620)/5 = 0.105832... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A001878 Number of divisors of n of the form 5k+3; a(0) = 0.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 3, 0, 0, 1, 1, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0, 2, 1, 1, 2, 0, 1, 2, 0, 0, 3, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 1, 2, 0, 1, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{n>=0} x^(5*n+3)/(1 - x^(5*n+3)).
G.f.: Sum_{k>=1} x^(3*k)/(1 - x^(5*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,5) - (1 - gamma)/5 = A256848 - (1 - A001620)/5 = -0.0983206... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A359233 Number of divisors of 5*n-1 of form 5*k+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 3, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2022

Keywords

Comments

Also number of divisors of 5*n-1 of form 5*k+4.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-1, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, d%5==1);
    
  • PARI
    a(n) = sumdiv(5*n-1, d, d%5==4);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-1))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(4*k-3)/(1-x^(5*k-4))))

Formula

a(n) = A001876(5*n-1) = A001899(5*n-1).
G.f.: Sum_{k>0} x^k/(1 - x^(5*k-1)).
G.f.: Sum_{k>0} x^(4*k-3)/(1 - x^(5*k-4)).

A359241 Number of divisors of 5*n-4 of form 5*k+4.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 2, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-4, 1 &, Mod[#, 5] == 4 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
  • PARI
    a(n) = sumdiv(5*n-4, d, d%5==4);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1-x^(5*k-1)))))

Formula

a(n) = A001899(5*n-4).
G.f.: Sum_{k>0} x^(4*k)/(1 - x^(5*k-1)).

A359269 Number of divisors of 5*n-2 of form 5*k+2.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 1, 2, 0, 1, 0, 2, 0, 2, 0, 3, 0, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 4, 0, 1, 0, 2, 0, 2, 1, 2, 0, 1, 0, 3, 0, 3, 1, 2, 0, 1, 0, 2, 1, 1, 0, 4, 0, 1, 0, 4, 0, 1, 1, 2, 1, 1, 1, 3, 0, 1, 0, 2, 0, 4, 0, 2, 0, 1, 0, 4, 1, 2, 1, 2, 0, 1, 0, 4
Offset: 1

Views

Author

Seiichi Manyama, Dec 23 2022

Keywords

Comments

Also number of divisors of 5*n-2 of form 5*k+4.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-2, 1 &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(5*n-2, d, d%5==2);
    
  • PARI
    a(n) = sumdiv(5*n-2, d, d%5==4);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(5*k-1)))))
    
  • PARI
    my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(4*k-2)/(1-x^(5*k-3)))))

Formula

a(n) = A001877(5*n-2) = A001899(5*n-2).
G.f.: Sum_{k>0} x^(2*k)/(1 - x^(5*k-1)).
G.f.: Sum_{k>0} x^(4*k-2)/(1 - x^(5*k-3)).

A363900 Expansion of Sum_{k>0} k * x^(4*k) / (1 - x^(5*k)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 3, 0, 1, 0, 4, 0, 2, 1, 5, 0, 0, 0, 7, 0, 0, 3, 9, 1, 0, 0, 8, 0, 1, 0, 13, 0, 2, 1, 10, 0, 3, 0, 12, 5, 0, 0, 14, 1, 0, 0, 13, 0, 7, 0, 18, 3, 2, 1, 15, 0, 0, 7, 17, 0, 0, 0, 19, 1, 5, 0, 29, 0, 1, 0, 23, 0, 2, 1, 20, 9, 0, 0, 28, 0, 0, 3, 24, 1, 10, 0, 23, 0, 1, 5, 28, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[n/#, 5] == 4 &]; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d%5==4)*d);

Formula

a(n) = Sum_{d|n, n/d==4 mod 5} d.
G.f.: Sum_{k>0} x^(5*k-1) / (1 - x^(5*k-1))^2.

A359270 Number of divisors of 5*n-3 of form 5*k+3.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 1, 0, 2, 2, 0, 0, 2, 0, 0, 1, 2, 0, 2, 0, 1, 1, 1, 0, 3, 0, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 4, 0, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 4, 0, 1, 1, 1, 0, 3, 0, 2, 1, 0, 0, 2, 1, 0, 2, 3, 0, 1, 0, 1, 1, 0, 0, 5, 1, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 23 2022

Keywords

Comments

Also number of divisors of 5*n-3 of form 5*k+4.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-3, 1 &, Mod[#, 5] == 3 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(5*n-3, d, d%5==3);
    
  • PARI
    a(n) = sumdiv(5*n-3, d, d%5==4);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1-x^(5*k-1)))))
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(4*k-1)/(1-x^(5*k-2)))))

Formula

a(n) = A001878(5*n-3) = A001899(5*n-3).
G.f.: Sum_{k>0} x^(3*k)/(1 - x^(5*k-1)).
G.f.: Sum_{k>0} x^(4*k-1)/(1 - x^(5*k-2)).

A363929 Expansion of Sum_{k>0} x^(4*k) / (1 - x^(5*k))^2.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 3, 0, 1, 0, 2, 4, 1, 0, 0, 0, 6, 0, 0, 2, 4, 6, 0, 0, 1, 0, 7, 0, 3, 0, 4, 8, 1, 0, 3, 0, 10, 2, 0, 0, 6, 10, 0, 0, 1, 0, 13, 0, 4, 4, 6, 12, 1, 0, 0, 2, 14, 0, 0, 0, 8, 14, 3, 0, 8, 0, 15, 0, 5, 0, 8, 16, 1, 2, 0, 0, 21, 0, 0, 6, 10, 18, 2, 0, 1, 0, 19, 4, 6, 0, 13, 22, 1, 0, 7, 0, 22, 0, 0, 0, 14, 22, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 1 &, Mod[#, 5] == 4 &] / 5; Array[a, 100] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%5==4)*(d+1))/5;

Formula

a(n) = (1/5) * Sum_{d|n, d==4 mod 5} (d+1) = (A001899(n) + A284103(n))/5.
G.f.: Sum_{k>0} k * x^(5*k-1) / (1 - x^(5*k-1)).

A364600 a(n) is the least number with exactly n divisors of the form 5*k+4.

Original entry on oeis.org

1, 4, 24, 72, 144, 432, 504, 1008, 1512, 3528, 3024, 7056, 5544, 14112, 11088, 13104, 16632, 26208, 36288, 63504, 33264, 68544, 77616, 127008, 66528, 154224, 155232, 209664, 133056, 222768, 144144, 301392, 216216, 853776, 288288, 471744, 399168, 825552, 698544, 1707552, 432432
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2023

Keywords

Crossrefs

Programs

  • PARI
    list(nmax) = {my(v = vector(nmax+1), c = 0, k = 1, i); while(c < nmax+1, i = sumdiv(k, d, d % 5 == 4) + 1; if(i <= nmax+1 && v[i] == 0, c++; v[i] = k); k++); v;} \\ Amiram Eldar, Jan 28 2025
Showing 1-10 of 13 results. Next