cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A359288 Number of divisors of 5*n-1 of form 5*k+3.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 2, 0, 1, 2, 0, 2, 2, 0, 0, 2, 0, 0, 2, 2, 0, 4, 0, 0, 2, 0, 0, 4, 0, 0, 2, 0, 0, 2, 2, 2, 2, 0, 0, 3, 0, 0, 2, 2, 0, 2, 0, 2, 2, 0, 0, 4, 0, 0, 2, 0, 0, 4, 0, 2, 4, 0, 0, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Dec 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-1, 1 &, Mod[#, 5] == 3 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, d%5==3);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(3*k-1)/(1-x^(5*k-2)))))

Formula

a(n) = A001878(5*n-1).
G.f.: Sum_{k>0} x^(3*k-1)/(1 - x^(5*k-2)).

A363035 Sum of divisors of 5*n-3 of form 5*k+3.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 8, 0, 3, 0, 13, 3, 0, 0, 29, 0, 0, 3, 23, 0, 3, 0, 36, 16, 0, 0, 36, 0, 0, 3, 46, 0, 21, 0, 43, 3, 13, 0, 59, 0, 0, 26, 53, 0, 3, 0, 66, 3, 0, 13, 112, 0, 0, 3, 76, 0, 3, 0, 73, 36, 0, 0, 102, 0, 23, 3, 83, 0, 59, 0, 96, 3, 0, 0, 96, 13, 0, 46, 134, 0, 3, 0, 103, 3, 0, 0, 185, 23, 13, 3, 113, 0, 36
Offset: 1

Views

Author

Seiichi Manyama, Jul 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 3, # &, Mod[#, 5] == 3 &]; Array[a, 100] (* Amiram Eldar, Jul 06 2023 *)
  • PARI
    a(n) = sumdiv(5*n-3, d, (d%5==3)*d);

Formula

a(n) = A284281(5*n-3).
G.f.: Sum_{k>0} (5*k-2) * x^(4*k-1) / (1 - x^(5*k-2)).

A364102 Sum of divisors of 5*n-3 of form 5*k+4.

Original entry on oeis.org

0, 0, 4, 0, 0, 9, 4, 0, 14, 0, 4, 19, 0, 0, 37, 0, 0, 29, 4, 0, 34, 0, 18, 48, 0, 0, 48, 0, 0, 49, 23, 0, 63, 0, 4, 59, 14, 0, 92, 0, 0, 78, 4, 0, 74, 0, 33, 79, 0, 19, 111, 0, 0, 89, 38, 0, 94, 0, 4, 108, 0, 0, 171, 0, 14, 109, 4, 0, 142, 0, 48, 119, 0, 0, 128, 29, 0, 138, 67, 0, 134, 0, 4, 139, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Jul 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 3, # &, Mod[#, 5] == 4 &]; Array[a, 100] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(5*n-3, d, (d%5==4)*d);

Formula

a(n) = A284103(5*n-3).
G.f.: Sum_{k>0} (5*k-1) * x^(3*k) / (1 - x^(5*k-1)).

A364106 Expansion of Sum_{k>0} k * x^(3*k) / (1 - x^(5*k-1)).

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 1, 0, 3, 0, 1, 4, 0, 0, 8, 0, 0, 6, 1, 0, 7, 0, 4, 10, 0, 0, 10, 0, 0, 10, 5, 0, 13, 0, 1, 12, 3, 0, 19, 0, 0, 16, 1, 0, 15, 0, 7, 16, 0, 4, 23, 0, 0, 18, 8, 0, 19, 0, 1, 22, 0, 0, 35, 0, 3, 22, 1, 0, 29, 0, 10, 24, 0, 0, 26, 6, 0, 28, 14, 0, 27, 0, 1, 28, 0, 0, 48, 4, 7, 30, 1, 0
Offset: 1

Views

Author

Seiichi Manyama, Jul 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 3, # + 1 &, Mod[#, 5] == 4 &]/5; Array[a, 100] (* Amiram Eldar, Jul 12 2023 *)
  • PARI
    a(n) = sumdiv(5*n-3, d, (d%5==4)*(d+1))/5;

Formula

a(n) = (1/5) * Sum_{d | 5*n-3, d==4 (mod 5)} (d+1).
G.f.: Sum_{k>0} x^(4*k-1) / (1 - x^(5*k-2))^2.

A363157 Expansion of Sum_{k>0} k * x^(4*k-1) / (1 - x^(5*k-2)).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 3, 1, 0, 0, 7, 0, 0, 1, 5, 0, 1, 0, 8, 4, 0, 0, 8, 0, 0, 1, 10, 0, 5, 0, 9, 1, 3, 0, 13, 0, 0, 6, 11, 0, 1, 0, 14, 1, 0, 3, 24, 0, 0, 1, 16, 0, 1, 0, 15, 8, 0, 0, 22, 0, 5, 1, 17, 0, 13, 0, 20, 1, 0, 0, 20, 3, 0, 10, 28, 0, 1, 0, 21, 1, 0, 0, 39, 5, 3, 1, 23, 0, 8, 0, 26, 12, 0, 0, 26
Offset: 1

Views

Author

Seiichi Manyama, Jul 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 3, # + 2 &, Mod[#, 5] == 3 &]/5; Array[a, 100] (* Amiram Eldar, Jul 06 2023 *)
  • PARI
    a(n) = sumdiv(5*n-3, d, (d%5==3)*(d+2))/5;

Formula

a(n) = (1/5) * Sum_{d | 5*n-3, d==3 (mod 5)} (d+2).
G.f.: Sum_{k>0} x^(3*k) / (1 - x^(5*k-1))^2.
Showing 1-5 of 5 results.