cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A359236 Number of divisors of 5*n-2 of form 5*k+1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 2, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 4, 1, 3, 2, 1, 1, 3, 1, 1, 2, 2, 2, 3, 1, 1, 3, 1, 1, 5, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 1, 3, 3, 1, 4, 1, 1, 2, 1, 2, 4, 1, 2, 2, 1, 1, 3, 1, 3
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2022

Keywords

Comments

Also number of divisors of 5*n-2 of form 5*k+3.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-2, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
  • PARI
    a(n) = sumdiv(5*n-2, d, d%5==1);
    
  • PARI
    a(n) = sumdiv(5*n-2, d, d%5==3);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-2))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(3*k-2)/(1-x^(5*k-4))))

Formula

a(n) = A001876(5*n-2) = A001878(5*n-2).
G.f.: Sum_{k>0} x^k/(1 - x^(5*k-2)).
G.f.: Sum_{k>0} x^(3*k-2)/(1 - x^(5*k-4)).

A359237 Number of divisors of 5*n-3 of form 5*k+1.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 4, 1, 2, 2, 2, 1, 3, 1, 2, 1, 3, 2, 4, 1, 2, 1, 2, 2, 3, 1, 2, 1, 3, 1, 5, 1, 2, 1, 3, 1, 3, 2, 2, 2, 2, 1, 4, 1, 3, 1, 2, 1, 3, 1, 4, 3, 2, 1, 4, 1, 2, 1, 3, 1, 3, 2, 2, 1, 2, 2, 5, 1, 3, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2022

Keywords

Comments

Also number of divisors of 5*n-3 of form 5*k+2.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-3, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
  • PARI
    a(n) = sumdiv(5*n-3, d, d%5==1);
    
  • PARI
    a(n) = sumdiv(5*n-3, d, d%5==2);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-3))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(5*k-4))))

Formula

a(n) = A001876(5*n-3) = A001877(5*n-3).
G.f.: Sum_{k>0} x^k/(1 - x^(5*k-3)).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(5*k-4)).

A359305 Number of divisors of 6*n-1 of form 6*k+1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 3, 1, 2, 1, 1, 4, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 3
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Comments

Also number of divisors of 6*n-1 of form 6*k+5.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 6*n - 1]/2; Array[a, 100] (* Amiram Eldar, Dec 26 2022 *)
  • PARI
    a(n) = sumdiv(6*n-1, d, d%6==1);
    
  • PARI
    a(n) = sumdiv(6*n-1, d, d%6==5);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-1))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(5*k-4)/(1-x^(6*k-5))))

Formula

a(n) = A279060(6*n-1) = A319995(6*n-1).
G.f.: Sum_{k>0} x^k/(1 - x^(6*k-1)).
G.f.: Sum_{k>0} x^(5*k-4)/(1 - x^(6*k-5)).
From Amiram Eldar, Dec 26 2022: (Start)
a(n) = A000005(A016969(n-1))/2.
Sum_{k=1..n} a(k) = (log(n) + 2*gamma - 1 + 3*log(2) + 2*log(3))*n/6 + O(n^(1/3)*log(n)), where gamma is Euler's constant (A001620). (End)

A364104 Expansion of Sum_{k>0} k * x^k / (1 - x^(5*k-1)).

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 7, 8, 10, 10, 13, 12, 14, 14, 15, 16, 21, 18, 19, 22, 22, 22, 27, 24, 26, 26, 27, 28, 37, 30, 34, 32, 34, 34, 41, 36, 38, 40, 39, 40, 49, 46, 43, 44, 49, 46, 57, 48, 50, 50, 51, 52, 68, 54, 55, 58, 58, 58, 72, 60, 66, 62, 63, 70, 79, 66, 67, 68, 70, 70, 83, 72, 77, 76, 82, 76, 96
Offset: 1

Views

Author

Seiichi Manyama, Jul 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 1, # + 1 &, Mod[#, 5] == 4 &]/5; Array[a, 100] (* Amiram Eldar, Jul 12 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, (d%5==4)*(d+1))/5;

Formula

a(n) = (1/5) * Sum_{d | 5*n-1, d==4 (mod 5)} (d+1).
G.f.: Sum_{k>0} x^(4*k-3) / (1 - x^(5*k-4))^2.

A359238 Number of divisors of 5*n-4 of form 5*k+1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 6, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 6, 2, 2, 2, 4, 2, 4, 2, 2, 3, 2
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-4, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
  • PARI
    a(n) = sumdiv(5*n-4, d, d%5==1);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-4))))

Formula

a(n) = A001876(5*n-4).
G.f.: Sum_{k>0} x^k/(1 - x^(5*k-4)).

A364096 Expansion of Sum_{k>0} k * x^(4*k-3) / (1 - x^(5*k-4)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 5, 1, 1, 1, 8, 1, 1, 4, 7, 1, 3, 1, 8, 1, 1, 1, 15, 1, 4, 1, 10, 1, 3, 1, 11, 6, 1, 1, 14, 4, 1, 1, 17, 1, 9, 1, 14, 1, 1, 1, 20, 1, 1, 8, 16, 1, 8, 1, 21, 1, 1, 4, 28, 1, 1, 1, 19, 1, 3, 1, 26, 10, 4, 1, 27, 1, 1, 6, 22, 1, 13, 1, 23, 4, 8, 1, 26, 1, 1, 12, 29, 1, 3, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 1, # + 4 &, Mod[#, 5] == 1 &]/5; Array[a, 100] (* Amiram Eldar, Jul 12 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, (d%5==1)*(d+4))/5;

Formula

a(n) = (1/5) * Sum_{d | 5*n-1, d==1 (mod 5)} (d+4).
G.f.: Sum_{k>0} x^k / (1 - x^(5*k-1))^2.

A359287 Number of divisors of 5*n-1 of form 5*k+2.

Original entry on oeis.org

1, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 0, 3, 0, 4, 0, 2, 0, 2, 0, 2, 2, 2, 0, 4, 0, 2, 0, 4, 0, 2, 0, 2, 0, 2, 2, 4, 0, 2, 0, 2, 1, 4, 0, 2, 0, 2, 0, 4, 2, 2, 0, 2, 0, 2, 0, 4, 0, 4, 0, 4, 0, 2, 2, 2, 0, 2, 0, 2, 0, 4, 0, 4, 0
Offset: 1

Views

Author

Seiichi Manyama, Dec 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-1, 1 &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, d%5==2);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(5*k-3))))

Formula

a(n) = A001877(5*n-1).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(5*k-3)).

A359288 Number of divisors of 5*n-1 of form 5*k+3.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 2, 0, 1, 2, 0, 2, 2, 0, 0, 2, 0, 0, 2, 2, 0, 4, 0, 0, 2, 0, 0, 4, 0, 0, 2, 0, 0, 2, 2, 2, 2, 0, 0, 3, 0, 0, 2, 2, 0, 2, 0, 2, 2, 0, 0, 4, 0, 0, 2, 0, 0, 4, 0, 2, 4, 0, 0, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Dec 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-1, 1 &, Mod[#, 5] == 3 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, d%5==3);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(3*k-1)/(1-x^(5*k-2)))))

Formula

a(n) = A001878(5*n-1).
G.f.: Sum_{k>0} x^(3*k-1)/(1 - x^(5*k-2)).

A364092 Sum of divisors of 5*n-1 of form 5*k+1.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 1, 12, 1, 7, 1, 17, 1, 1, 1, 28, 1, 1, 12, 27, 1, 7, 1, 32, 1, 1, 1, 59, 1, 12, 1, 42, 1, 7, 1, 47, 22, 1, 1, 58, 12, 1, 1, 73, 1, 33, 1, 62, 1, 1, 1, 84, 1, 1, 32, 72, 1, 28, 1, 93, 1, 1, 12, 124, 1, 1, 1, 87, 1, 7, 1, 118, 42, 12, 1, 119, 1, 1, 22, 102, 1, 53, 1, 107, 12, 32, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 1, # &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, (d%5==1)*d);

Formula

a(n) = A284097(5*n-1).
G.f.: Sum_{k>0} (5*k-4) * x^(4*k-3) / (1 - x^(5*k-4)).

A364100 Sum of divisors of 5*n-1 of form 5*k+4.

Original entry on oeis.org

4, 9, 14, 19, 28, 29, 34, 39, 48, 49, 63, 59, 68, 69, 74, 79, 102, 89, 94, 108, 108, 109, 133, 119, 128, 129, 134, 139, 181, 149, 168, 159, 168, 169, 203, 179, 188, 198, 194, 199, 242, 228, 214, 219, 242, 229, 282, 239, 248, 249, 254, 259, 336, 269, 274, 288, 288, 289, 357, 299, 327, 309, 314, 348
Offset: 1

Views

Author

Seiichi Manyama, Jul 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 1, # &, Mod[#, 5] == 4 &]; Array[a, 100] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, (d%5==4)*d);

Formula

a(n) = A284103(5*n-1).
G.f.: Sum_{k>0} (5*k-1) * x^k / (1 - x^(5*k-1)).
Showing 1-10 of 10 results.