A363028 Expansion of Sum_{k>0} k * x^(2*k-1) / (1 - x^(5*k-3)).
1, 0, 3, 0, 4, 0, 5, 0, 6, 2, 7, 0, 8, 0, 9, 0, 15, 0, 11, 0, 12, 0, 13, 6, 14, 0, 15, 0, 19, 0, 24, 0, 18, 0, 19, 0, 20, 8, 21, 0, 29, 0, 23, 0, 33, 0, 25, 0, 26, 0, 27, 10, 36, 0, 29, 0, 30, 4, 42, 0, 32, 0, 33, 0, 43, 12, 35, 0, 36, 0, 37, 0, 51, 0, 48, 0, 50, 0, 41, 14, 42, 0, 43, 0, 44, 0, 60, 0
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := DivisorSum[5*n - 1, # + 3 &, Mod[#, 5] == 2 &]/5; Array[a, 100] (* Amiram Eldar, Jul 06 2023 *)
-
PARI
a(n) = sumdiv(5*n-1, d, (d%5==2)*(d+3))/5;
Formula
a(n) = (1/5) * Sum_{d | 5*n-1, d==2 (mod 5)} (d+3).
G.f.: Sum_{k>0} x^(2*k-1) / (1 - x^(5*k-3))^2.