cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A102276 a(n) = (a(n-1) * a(n-5) + a(n-3)^2) / a(n-6) with a(0) = ... = a(5) = 1, a(n) = a(5-n) for all n in Z.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 8, 17, 50, 107, 239, 1103, 3775, 14463, 55283, 256666, 2059753, 9820288, 55075036, 503857819, 4083736906, 44590046729, 335845998321, 3581731774609, 68868876045617, 782035904796497, 11680434156713849, 194342679446776442
Offset: 0

Views

Author

Michael Somos, Jan 02 2005

Keywords

Comments

Sequence defined by recursion derived from a genus 2 curve.
Similar to the Somos-6 and Somos-7 sequences with many bilinear identities.
If a0 := a(n), a1 := a(n+1), ..., a5 := a(n+5), a6 := a(n+6) and a6 = (a5*a1 + a3^2)/a0 for all n in Z, then c := (a0^2*a1*a4*a5^2 + a0^2*a3*a4^3 + a1^3*a2*a5^2 + a0*a2^2*a3*a4^2 + a1^2*a2*a3^2*a5 + a0*a2*a3^3*a4 + a1*a2^3*a3*a5 + a2^3*a3^3)/(a0*a1*a2*a3*a4*a5) is constant. - Michael Somos, Jun 30 2024

Crossrefs

Programs

  • Magma
    I:=[1, 2, 3, 4, 8, 17]; [1, 1, 1, 1, 1] cat [n le 6 select I[n] else (Self(n-1)*Self(n-5) + Self(n-3)^2)/Self(n-6): n in [1..30]]; // G. C. Greubel, Aug 03 2018
  • Mathematica
    Join[{1, 1, 1, 1, 1}, RecurrenceTable[{a[n] == (a[n-1]*a[n-5] + a[n-3]^2)/a[n-6], a[6] == 1, a[7] == 2, a[8] == 3, a[9] == 4, a[10] == 8, a[11] == 17}, a, {n, 6, 60}]] (* G. C. Greubel, Aug 03 2018 *)
  • PARI
    {a(n) = my(an); if( n<0, a(5-n), n++; an = vector(n,i,1); for(k=7, n, an[k] = (an[k-1]*an[k-5] + an[k-3]^2) / an[k-6]); an[n])};
    

Formula

a(n) = A256858(2*n - 5) for all n in Z. - Michael Somos, Apr 13 2015
Let b(n) = A256916(n). Then 0 = a(n) * b(n) - a(n-2) * b(n+2) + a(n-3) * b(n+3) for all n in Z. - Michael Somos, Apr 13 2015
0 = a(n) * a(n+6) - a(n+1) * a(n+5) - a(n+3) * a(n+3) for all n in Z. - Michael Somos, Apr 13 2015
0 = a(n) * a(n+9) + a(n+2) * a(n+7) - a(n+3) * a(n+6) - 9 * a(n+4) * a(n+5) for all n in Z. - Michael Somos, Apr 13 2015

A256916 a(n) = (a(n-1) * a(n-5) + a(n-3)^2) / a(n-6) with a(0) = a(1) = 1, a(2) = 0, a(3) = -1, a(4) = -3, a(8) = 29.

Original entry on oeis.org

1, 1, 0, -1, -3, -3, -2, 9, 29, 83, 56, -243, -2351, -7227, -18648, 54011, 698301, 5324929, 15128062, -28437275, -1438167267, -14356619593, -108319050672, 80689859625, 13472837856577, 268773209122329, 2678522836045616, 7565687047045511, -672545703786704803
Offset: 0

Views

Author

Michael Somos, Apr 13 2015

Keywords

Comments

Similar to the Somos-6 and Somos-7 sequences with many bilinear identities.

Crossrefs

Programs

  • Magma
    I:=[83, 56, -243, -2351, -7227, -18648]; [1,1,0,-1,-3,-3,-2,9,29] cat [n le 6 select I[n] else (Self(n-1)*Self(n-5) + Self(n-3)^2)/ Self(n-6): n in [1..30]]; // G. C. Greubel, Aug 03 2018
  • Mathematica
    Join[{1,1,0,-1,-3,-3,-2,9,29}, RecurrenceTable[{a[n] == (a[n-1]*a[n-5] + a[n-3]^2)/a[n-6], a[9] == 83, a[10] == 56, a[11] == -243, a[12] == -2351, a[13] == -7227, a[14] == -18648}, a, {n, 9, 60}]] (* G. C. Greubel, Aug 03 2018 *)
  • PARI
    {a(n) = my(an); n = abs(n)+1; an = concat([ 1, 1, 0, -1, -3, -3, -2, 9, 29], vector(max(0, n-9), k)); for(k=10, n, an[k] = (an[k-1] * an[k-5] + an[k-3]^2) / an[k-6]); an[n]};
    

Formula

a(n) = a(-n) for all n in Z.
a(n) = A256858(2*n) for all n in Z.
Let b(n) = A102276(n). Then 0 = a(n) * b(n) - a(n+2) * b(n-2) + a(n+3) * b(n-3) for all n in Z.
0 = a(n) * a(n+6) - a(n+1) * a(n+5) - a(n+3) * a(n+3) for all n in Z.
0 = a(n) * a(n+9) + a(n+2) * a(n+7) - a(n+3) * a(n+6) - 9 * a(n+4) * a(n+5) for all n in Z.
Showing 1-2 of 2 results.