A256891 Smallest primes of 3 X 3 magic squares formed from consecutive primes.
1480028129, 1850590057, 5196185947, 5601567187, 5757284497, 6048371029, 6151077269, 9517122259, 19052235847, 20477868319, 23813359613, 24026890159, 26748150199, 28519991387, 34821326119, 44420969909, 49285771679, 73827799009, 73974781889, 74220519319, 76483907837, 76560277009, 80143089599, 85892025227, 89132925737, 95515449037, 99977424653
Offset: 1
Keywords
References
- Allan W. Johnson, Jr., Consecutive-Prime Magic Squares, Journal of Recreational Mathematics, vol. 15, 1982-83, pp. 17-18.
- H. L. Nelson, A Consecutive Prime 3 x 3 Magic Square, Journal of Recreational Mathematics, vol. 20:3, 1988, p. 214.
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..759
- Harvey D. Heinz, Prime Numbers Magic Squares: Minimum consecutive primes - 3, 1999-2010.
- Eric Weisstein's World of Mathematics, Prime Magic Square
- Index entries for sequences related to magic squares
Crossrefs
Programs
-
Magma
/* Brute-force search */ lst:=[]; n:=3; while n lt 10^11 do a:=NextPrime(n); q:=a; j:=a-n; if j mod 6 eq 0 then b:=NextPrime(a); if j eq b-a then c:=NextPrime(b); d:=c-b; if d mod 6 eq 0 then e:=NextPrime(c); k:=e-c; if k eq j then f:=NextPrime(e); if k eq f-e then g:=NextPrime(f); if g-f eq d then h:=NextPrime(g); m:=h-g; if m eq k then i:=NextPrime(h); if h-g eq i-h then Append(~lst, n); end if; end if; end if; end if; end if; end if; end if; end if; n:=q; end while; lst;
-
PARI
A256891(n)=MagicPrimes(A270305(n),3)[1] \\ See A073519 for MagicPrimes(). - M. F. Hasler, Oct 28 2018
Extensions
Extended by Max Alekseyev, Nov 02 2015
Comments