cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256893 Exponential Riordan array [1, 1/(2-e^x)-1].

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 13, 9, 1, 0, 75, 79, 18, 1, 0, 541, 765, 265, 30, 1, 0, 4683, 8311, 3870, 665, 45, 1, 0, 47293, 100989, 59101, 13650, 1400, 63, 1, 0, 545835, 1362439, 960498, 278901, 38430, 2618, 84, 1, 0, 7087261, 20246445, 16700545, 5844510, 1012431, 92610, 4494, 108, 1
Offset: 0

Views

Author

Peter Luschny, Apr 17 2015

Keywords

Comments

This is also the matrix product of the Stirling set numbers and the unsigned Lah numbers.
This is also the Bell transform of A000670(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			Number triangle starts:
  1;
  0,    1;
  0,    3,     1;
  0,   13,     9,     1;
  0,   75,    79,    18,    1;
  0,  541,   765,   265,   30,   1;
  ...
		

Crossrefs

Cf. A088729 which is a variant based on an (1,1)-offset of the number triangles.
Cf. A131222 which is the matrix product of the unsigned Lah numbers and the Stirling cycle numbers.

Programs

  • Maple
    T:= (n, k)-> n!*coeff(series((1/(2-exp(x))-1)^k/k!, x, n+1), x, n):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Apr 17 2015
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> polylog(-n-1, 1/2)/2, 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    T[n_, k_] := n!*SeriesCoefficient[(1/(2 - Exp[x]) - 1)^k/k!, {x, 0, n}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 23 2016, after Alois P. Heinz *)
    (* The function BellMatrix is defined in A264428. *)
    BellMatrix[PolyLog[-#-1, 1/2]/2&, 9] (* Jean-François Alcover, May 23 2016, after Peter Luschny *)
    RiordanArray[d_, h_, n_] := RiordanArray[d, h, n, False];
    RiordanArray[d_Function|d_Symbol, h_Function|h_Symbol, n_, exp_:(True | False)] := Module[{M, td, th, k, m},
    M[, ] = 0;
    td = PadRight[CoefficientList[d[x] + O[x]^n, x], n];
    th = PadRight[CoefficientList[h[x] + O[x]^n, x], n];
    For[k = 0, k <= n - 1, k++, M[k, 0] = td[[k + 1]]];
    For[k = 1, k <= n - 1, k++,
      For[m = k, m <= n - 1, m++,
        M[m, k] = Sum[M[j, k - 1]*th[[m - j + 1]], {j, k - 1, m - 1}]]];
    If[exp,
      u = 1;
      For[k = 1, k <= n - 1, k++,
        u *= k;
        For[m = 0, m <= k, m++,
          j = If[m == 0, u, j/m];
          M[k, m] *= j]]];
    Table[M[m, k], {m, 0, n - 1}, {k, 0, m}]];
    RiordanArray[1&, 1/(2 - Exp[#])-1&, 10, True] // Flatten (* Jean-François Alcover, Jul 16 2019, after Sage program *)
  • Sage
    def riordan_array(d, h, n, exp=false):
        def taylor_list(f,n):
            t = SR(f).taylor(x,0,n-1).list()
            return t + [0]*(n-len(t))
        td = taylor_list(d,n)
        th = taylor_list(h,n)
        M = matrix(QQ,n,n)
        for k in (0..n-1): M[k,0] = td[k]
        for k in (1..n-1):
            for m in (k..n-1):
                M[m,k] = add(M[j,k-1]*th[m-j] for j in (k-1..m-1))
        if exp:
            u = 1
            for k in (1..n-1):
                u *= k
                for m in (0..k):
                    j = u if m==0 else j/m
                    M[k,m] *= j
        return M
    riordan_array(1, 1/(2-exp(x)) - 1, 8, exp=true)
    # As a matrix product:
    def Lah(n, k):
        if n == k: return 1
        if k<0 or  k>n: return 0
        return (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1))
    matrix(ZZ, 8, stirling_number2)*matrix(ZZ, 8, Lah)

Formula

Row sums are given by A075729.
T(n,1) = A000670(n) for n>=1.
T(n,k) = n!/k! * [x^n] (1/(2-exp(x))-1)^k. - Alois P. Heinz, Apr 17 2015