A256915 Length of the enhanced squares representation of n.
1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 4, 1, 2, 2, 2, 2, 3, 3, 3, 4, 2, 3, 1, 2, 2, 2, 2, 3, 3, 3, 4, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 4, 2, 3, 3, 3, 3, 4, 1, 2, 2, 2, 2, 3, 3, 3, 4, 2, 3, 3, 3, 3, 4, 4, 2, 1, 2, 2, 2, 2
Offset: 0
Examples
R(0) = 0, so length = 1. R(1) = 1, so length = 1. R(8) = 4 + 3 + 1, so length = 3. R(7224) = 7056 + 144 + 16 + 4 + 3 + 1, so length = 6.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
a256915 = length . a256913_row -- Reinhard Zumkeller, Apr 15 2015
-
Mathematica
b[n_] := n^2; bb = Insert[Table[b[n], {n, 0, 100}] , 2, 3]; s[n_] := Table[b[n], {k, 1, 2 n + 1}]; h[1] = {0, 1, 2, 3}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; Take[g, 100] r[0] = {0}; r[1] = {1}; r[2] = {2}; r[3] = {3}; r[8] = {4, 3, 1}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]]; t = Table[r[n], {n, 0, 120}] (* A256913, before concatenation *) Flatten[t] (* A256913 *) Table[Last[r[n]], {n, 0, 120}] (* A256914 *) Table[Length[r[n]], {n, 0, 200}] (* A256915 *)
Comments