A257120
Position of first occurrence of n in A256918.
Original entry on oeis.org
1, 4, 3, 5, 7, 11, 29, 13, 10, 15, 122, 19, 200, 31, 24, 18, 299, 22, 824, 16, 33, 124, 945, 41, 26, 202, 21, 37, 3093, 45, 7059, 40, 126, 301, 53, 66, 13527, 826, 204, 42, 28658, 36, 40810, 130, 57, 947, 46657, 64, 80, 44, 303, 208, 57449, 49, 133, 38, 828
Offset: 1
A257475
Position of second and last occurrence of n in A256918.
Original entry on oeis.org
2, 6, 9, 12, 8, 14, 30, 17, 20, 28, 123, 23, 201, 32, 25, 39, 300, 46, 825, 43, 34, 125, 946, 51, 27, 203, 47, 52, 3094, 56, 7060, 62, 127, 302, 54, 71, 13528, 827, 205, 61, 28659, 79, 40811, 132, 58, 948, 46658, 65, 81, 99, 304, 210, 57450, 69, 134, 77, 829
Offset: 1
A257478
Distance of positions of first and last occurrence of n in A256918.
Original entry on oeis.org
1, 2, 6, 7, 1, 3, 1, 4, 10, 13, 1, 4, 1, 1, 1, 21, 1, 24, 1, 27, 1, 1, 1, 10, 1, 1, 26, 15, 1, 11, 1, 22, 1, 1, 1, 5, 1, 1, 1, 19, 1, 43, 1, 2, 1, 1, 1, 1, 1, 55, 1, 2, 1, 20, 1, 39, 1, 1, 1, 13, 1, 1, 32, 42, 1, 11, 1, 2, 1, 67, 1, 26
Offset: 1
Let w(n) = A257218(n),
u(n) = A257120(n), xx'(n) = (w(u(n)),w(u(n)+1)),
v(n) = A257475(n), yy'(n) = (w(v(n)),w(v(n)+1)):
. ----+------+------+------++--------------+------------+---------+
. n | a(n) | u(n) | v(n) || xx'(n) | yy'(n) | ... gcd |
. ----+------+------+------++--------------+------------+---------+
. 1 | 1 | 1 | 2 || (1, 2) | (2, 3) | 1 |
. 2 | 2 | 4 | 6 || (6, 4) | (8, 10) | 2 |
. 3 | 6 | 3 | 9 || (3, 6) | (15, 9) | 3 |
. 4 | 7 | 5 | 12 || (4, 8) | (12, 16) | 4 |
. 5 | 1 | 7 | 8 || (10, 5) | (5, 15) | 5 |
. 6 | 3 | 11 | 14 || (18, 12) | (24, 30) | 6 |
. 7 | 1 | 29 | 30 || (70, 7) | (7, 14) | 7 |
. 8 | 4 | 13 | 17 || (16, 24) | (40, 32) | 8 |
. 9 | 10 | 10 | 20 || (9, 18) | (36, 27) | 9 |
. 10 | 13 | 15 | 28 || (30, 20) | (50, 70) | 10 |
. 11 | 1 | 122 | 123 || (660, 11) | (11, 22) | 11 |
. 12 | 4 | 19 | 23 || (48, 36) | (72, 60) | 12 |
. 13 | 1 | 200 | 201 || (1092, 13) | (13, 26) | 13 |
. 14 | 1 | 31 | 32 || (14, 28) | (28, 42) | 14 |
. 15 | 1 | 24 | 25 || (60, 45) | (45, 75) | 15 |
. 16 | 21 | 18 | 39 || (32, 48) | (112, 64) | 16 |
. 17 | 1 | 299 | 300 || (2142, 17) | (17, 34) | 17 |
. 18 | 24 | 22 | 46 || (54, 72) | (90, 108) | 18 |
. 19 | 1 | 824 | 825 || (10260, 19) | (19, 38) | 19 |
. 20 | 27 | 16 | 43 || (20, 40) | (80, 100) | 20 |
. 21 | 1 | 33 | 34 || (42, 21) | (21, 63) | 21 |
. 22 | 1 | 124 | 125 || (22, 44) | (44, 66) | 22 |
. 23 | 1 | 945 | 946 || (12420, 23) | (23, 46) | 23 |
. 24 | 10 | 41 | 51 || (96, 120) | (144, 168) | 24 |
. 25 | 1 | 26 | 27 || (75, 25) | (25, 50) | 25 | .
A257218
Lexicographically earliest sequence of distinct positive integers such that gcd(a(n), a(n-1)) takes no value more than twice.
Original entry on oeis.org
1, 2, 3, 6, 4, 8, 10, 5, 15, 9, 18, 12, 16, 24, 30, 20, 40, 32, 48, 36, 27, 54, 72, 60, 45, 75, 25, 50, 70, 7, 14, 28, 42, 21, 63, 126, 84, 56, 112, 64, 96, 120, 80, 100, 150, 90, 108, 81, 162, 216, 144, 168, 140, 35, 105, 210, 180, 135, 225, 300
Offset: 1
After a(9)=15, the values 1, 2, 3, 4, 6, and 8 are already used, while 7 is forbidden because gcd(15,7)=1 and that value of GCD has already occurred twice, at (1,2) and (2,3). The minimal value which is neither used not forbidden is 9, so a(10)=9.
Other minimal sequences of distinct positive integers that match some condition imposed on a(n) and a(n-1):
A081145 (absolute differences are unique),
A163252 (differ by one bit in binary),
A077220 (sum is a triangular number),
A073666 (product plus 1 is a prime),
A081943 (product minus 1 is a prime),
A091569 (product plus 1 is a square),
A100208 (sum of squares is a prime).
-
import Data.List (delete); import Data.List.Ordered (member)
a257218 n = a257218_list !! (n-1)
a257218_list = 1 : f 1 [2..] a004526_list where
f x zs cds = g zs where
g (y:ys) | cd `member` cds = y : f y (delete y zs) (delete cd cds)
| otherwise = g ys
where cd = gcd x y
-- Reinhard Zumkeller, Apr 24 2015
-
a={1}; used=Array[0&,10000]; Do[i=1; While[MemberQ[a,i] || used[[l=GCD[a[[-1]],i]]]>=2, i++]; used[[l]]++; AppendTo[a,i], {n,2,100}]; a (* Ivan Neretin, Apr 18 2015 *)
Showing 1-4 of 4 results.
Comments