A256918
Greatest common divisors of adjacent terms in A257218.
Original entry on oeis.org
1, 1, 3, 2, 4, 2, 5, 5, 3, 9, 6, 4, 8, 6, 10, 20, 8, 16, 12, 9, 27, 18, 12, 15, 15, 25, 25, 10, 7, 7, 14, 14, 21, 21, 63, 42, 28, 56, 16, 32, 24, 40, 20, 50, 30, 18, 27, 81, 54, 72, 24, 28, 35, 35, 105, 30, 45, 45, 75, 100, 40, 32, 64, 48, 48, 36, 63, 189
Offset: 1
A257122
Smallest m such that A257218(m) = n.
Original entry on oeis.org
1, 2, 3, 5, 8, 4, 30, 6, 10, 7, 123, 12, 201, 31, 9, 13, 300, 11, 825, 16, 34, 124, 946, 14, 27, 202, 21, 32, 3094, 15, 7060, 18, 127, 301, 54, 20, 13528, 826, 205, 17, 28659, 33, 40811, 125, 25, 947, 46658, 19, 81, 28, 304, 203, 57450, 22, 134, 38, 829, 3095
Offset: 1
A064413
EKG sequence (or ECG sequence): a(1) = 1; a(2) = 2; for n > 2, a(n) = smallest number not already used which shares a factor with a(n-1).
Original entry on oeis.org
1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, 18, 14, 7, 21, 24, 16, 20, 22, 11, 33, 27, 30, 25, 35, 28, 26, 13, 39, 36, 32, 34, 17, 51, 42, 38, 19, 57, 45, 40, 44, 46, 23, 69, 48, 50, 52, 54, 56, 49, 63, 60, 55, 65, 70, 58, 29, 87, 66, 62, 31, 93, 72, 64, 68, 74, 37, 111, 75, 78, 76, 80, 82
Offset: 1
Jonathan Ayres (Jonathan.ayres(AT)btinternet.com), Sep 30 2001
a(2) = 2, a(3) = 4 (gcd(2,4) = 2), a(4) = 6 (gcd(4,6) = 2), a(5) = 3 (gcd(6,3) = 3), a(6) = 9 (6 already used so next number which shares a factor is 9 since gcd(3,9) = 3).
- N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
- Zak Seidov, Table of n, a(n) for n = 1..10000
- David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669 [math.NT], 2015 and J. Int. Seq. 18 (2015) 15.6.7.
- Michael De Vlieger, Annotated plot of a(n) for n=1..120, showing prime p in red, 2p in blue, 3p in green, and other terms in gray.
- Michael De Vlieger, Partially annotated log-log scatterplot of a(n) for n=1..1024, showing prime p in red, 2p in blue, 3p in green, and other terms in gray. This plot exhibits three quasi-linear striations, the densest contains both 2p and all "gray" terms outside of the first dozen or so terms in the sequence.
- Michael De Vlieger, Table of n, a(n) for n = 1..262144.
- Michael De Vlieger, Mathematica version of Eric Rains' C Code, 2021.
- Diophante.fr, Les Récreations Mathématiques: E121. Une séquence cordiale.
- Gordon Hamilton, The EKG Sequence and the Tree of Numbers
- Gordon Hamilton, Untitled video related to previous video
- Piotr Hofman and Marcin Pilipczuk, A few new facts about the EKG sequence, J. Integer Seqs., 11 (2008), Article 08.4.2.
- James Keener, Mathematics of EKG [Refers to EKGs found in hospitals, included for comparison.]
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The EKG sequence, arXiv:math/0204011 [math.NT], 2002.
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The EKG Sequence, Exper. Math. 11 (2002), 437-446.
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, Plot of a(1) to a(100), with successive points joined by lines.
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, Terms 800 to 1000, with successive points joined by lines.
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The first 1000 terms (represented by dots), successive points not joined.
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The first 10000 terms (represented by dots), successive points not joined.
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The sequence smoothed by replacing a(n)=p or 3p, p prime > 2, by a(n) = 2p.
- Ivars Peterson, The EKG Sequence
- E. M. Rains, C program
- N. J. A. Sloane, Seven Staggering Sequences.
- N. J. A. Sloane, Confessions of a Sequence Addict (AofA2017), slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence.
- N. J. A. Sloane, Conant's Gasket, Recamán Variations, the Enots Wolley Sequence, and Stained Glass Windows, Experimental Math Seminar, Rutgers University, Sep 10 2020 (video of Zoom talk).
- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences: An illustrated guide with many unsolved problems, Guest Lecture given in Doron Zeilberger's Experimental Mathematics Math640 Class, Rutgers University, Spring Semester, Apr 28 2022: Slides; Slides (an alternative source).
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 16.
- Eric Weisstein's World of Mathematics, EKG Sequence
- Index entries for sequences related to EKG sequence
- Index entries for sequences that are permutations of the natural numbers
A073734 gives GCD's of successive terms.
See
A064664 for the inverse permutation. See
A064665-
A064668 for the first two infinite cycles of this permutation.
A064669 gives cycle representatives.
See
A064421 for sequence giving term at which n appears.
-
import Data.List (delete, genericIndex)
a064413 n = genericIndex a064413_list (n - 1)
a064413_list = 1 : f 2 [2..] where
ekg x zs = f zs where
f (y:ys) = if gcd x y > 1 then y : ekg y (delete y zs) else f ys
-- Reinhard Zumkeller, May 01 2014, Sep 17 2011
-
h := array(1..20000); a := array(1..10000); maxa := 300; maxn := 2*maxa; for n from 1 to maxn do h[n] := -1; od: a[1] := 2; h[2] := 1; c := 2; for n from 2 to maxa do for m from 2 to maxn do t1 := gcd(m,c); if t1 > 1 and h[m] = -1 then c := m; a[n] := c; h[c] := n; break; fi; od: od: ap := []: for n from 1 to maxa do ap := [op(ap),a[n]]; od: hp := []: for n from 2 to maxa do hp := [op(hp),h[n]]; od: convert(ap,list); convert(hp,list); # this is very crude!
N:= 1000: # to get terms before the first term > N
V:= Vector(N):
A[1]:= 1:
A[2]:= 2: V[2]:= 1:
for n from 3 do
S:= {seq(seq(k*p,k=1..N/p),p=numtheory:-factorset(A[n-1]))};
for s in sort(convert(S,list)) do
if V[s] = 0 then
A[n]:= s;
break
fi
od;
if V[s] = 1 then break fi;
V[s]:= 1;
od:
seq(A[i],i=1..n-1); # Robert Israel, Jan 18 2016
-
maxN = 100; ekg = {1, 2}; unused = Range[3, maxN]; found = True; While[found, found = False; i = 0; While[ !found && i < Length[unused], i++; If[GCD[ekg[[-1]], unused[[i]]] > 1, found = True; AppendTo[ekg, unused[[i]]]; unused = Delete[unused, i]]]]; ekg (* Ayres *)
ekGrapher[s_List] := Block[{m = s[[-1]], k = 3}, While[MemberQ[s, k] || GCD[m, k] == 1, k++ ]; Append[s, k]]; Nest[ekGrapher, {1, 2}, 71] (* Robert G. Wilson v, May 20 2009 *)
-
a1=1; a2=2; v=[1,2];
for(n=3,100,a3=if(n<0,0,t=1;while(vecmin(vector(length(v),i,abs(v[i]-t)))*(gcd(a2,t)-1)==0,t++);t);a2=a3;v=concat(v,a3););
a(n)=v[n];
/* Benoit Cloitre, Sep 23 2012 */
-
from math import gcd
A064413_list, l, s, b = [1,2], 2, 3, {}
for _ in range(10**5):
i = s
while True:
if not i in b and gcd(i, l) > 1:
A064413_list.append(i)
l, b[i] = i, True
while s in b:
b.pop(s)
s += 1
break
i += 1 # Chai Wah Wu, Dec 08 2014
A257120
Position of first occurrence of n in A256918.
Original entry on oeis.org
1, 4, 3, 5, 7, 11, 29, 13, 10, 15, 122, 19, 200, 31, 24, 18, 299, 22, 824, 16, 33, 124, 945, 41, 26, 202, 21, 37, 3093, 45, 7059, 40, 126, 301, 53, 66, 13527, 826, 204, 42, 28658, 36, 40810, 130, 57, 947, 46657, 64, 80, 44, 303, 208, 57449, 49, 133, 38, 828
Offset: 1
A257475
Position of second and last occurrence of n in A256918.
Original entry on oeis.org
2, 6, 9, 12, 8, 14, 30, 17, 20, 28, 123, 23, 201, 32, 25, 39, 300, 46, 825, 43, 34, 125, 946, 51, 27, 203, 47, 52, 3094, 56, 7060, 62, 127, 302, 54, 71, 13528, 827, 205, 61, 28659, 79, 40811, 132, 58, 948, 46658, 65, 81, 99, 304, 210, 57450, 69, 134, 77, 829
Offset: 1
A257478
Distance of positions of first and last occurrence of n in A256918.
Original entry on oeis.org
1, 2, 6, 7, 1, 3, 1, 4, 10, 13, 1, 4, 1, 1, 1, 21, 1, 24, 1, 27, 1, 1, 1, 10, 1, 1, 26, 15, 1, 11, 1, 22, 1, 1, 1, 5, 1, 1, 1, 19, 1, 43, 1, 2, 1, 1, 1, 1, 1, 55, 1, 2, 1, 20, 1, 39, 1, 1, 1, 13, 1, 1, 32, 42, 1, 11, 1, 2, 1, 67, 1, 26
Offset: 1
Let w(n) = A257218(n),
u(n) = A257120(n), xx'(n) = (w(u(n)),w(u(n)+1)),
v(n) = A257475(n), yy'(n) = (w(v(n)),w(v(n)+1)):
. ----+------+------+------++--------------+------------+---------+
. n | a(n) | u(n) | v(n) || xx'(n) | yy'(n) | ... gcd |
. ----+------+------+------++--------------+------------+---------+
. 1 | 1 | 1 | 2 || (1, 2) | (2, 3) | 1 |
. 2 | 2 | 4 | 6 || (6, 4) | (8, 10) | 2 |
. 3 | 6 | 3 | 9 || (3, 6) | (15, 9) | 3 |
. 4 | 7 | 5 | 12 || (4, 8) | (12, 16) | 4 |
. 5 | 1 | 7 | 8 || (10, 5) | (5, 15) | 5 |
. 6 | 3 | 11 | 14 || (18, 12) | (24, 30) | 6 |
. 7 | 1 | 29 | 30 || (70, 7) | (7, 14) | 7 |
. 8 | 4 | 13 | 17 || (16, 24) | (40, 32) | 8 |
. 9 | 10 | 10 | 20 || (9, 18) | (36, 27) | 9 |
. 10 | 13 | 15 | 28 || (30, 20) | (50, 70) | 10 |
. 11 | 1 | 122 | 123 || (660, 11) | (11, 22) | 11 |
. 12 | 4 | 19 | 23 || (48, 36) | (72, 60) | 12 |
. 13 | 1 | 200 | 201 || (1092, 13) | (13, 26) | 13 |
. 14 | 1 | 31 | 32 || (14, 28) | (28, 42) | 14 |
. 15 | 1 | 24 | 25 || (60, 45) | (45, 75) | 15 |
. 16 | 21 | 18 | 39 || (32, 48) | (112, 64) | 16 |
. 17 | 1 | 299 | 300 || (2142, 17) | (17, 34) | 17 |
. 18 | 24 | 22 | 46 || (54, 72) | (90, 108) | 18 |
. 19 | 1 | 824 | 825 || (10260, 19) | (19, 38) | 19 |
. 20 | 27 | 16 | 43 || (20, 40) | (80, 100) | 20 |
. 21 | 1 | 33 | 34 || (42, 21) | (21, 63) | 21 |
. 22 | 1 | 124 | 125 || (22, 44) | (44, 66) | 22 |
. 23 | 1 | 945 | 946 || (12420, 23) | (23, 46) | 23 |
. 24 | 10 | 41 | 51 || (96, 120) | (144, 168) | 24 |
. 25 | 1 | 26 | 27 || (75, 25) | (25, 50) | 25 | .
A384308
a(1) = 3; for n > 1, a(n) is the smallest number that has not appeared before and has the same set of prime divisors as a(n-1) + 1.
Original entry on oeis.org
3, 2, 9, 10, 11, 6, 7, 4, 5, 12, 13, 14, 15, 8, 27, 28, 29, 30, 31, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 81, 82, 83, 42, 43, 44, 45, 46, 47, 36, 37, 38, 39, 40, 41, 84, 85, 86, 87, 88, 89, 60, 61, 62, 63, 32, 33, 34, 35, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 90, 91, 92, 93, 94, 95, 72, 73, 74, 75
Offset: 1
For a(5) = 11, 11 + 1 = 12, its set of prime divisors is {2, 3}. The smallest number with the same set of prime divisors that has not appeared before is 6, so a(6) = 6.
-
N:= 1000:# for terms before the first term > N
for i from 2 to N do
S:= numtheory:-factorset(i);
if assigned(V[S]) then V[S]:= V[S] union {i}
else V[S]:= {i}
fi
od:
R:= 3: r:= 3: V[{3}]:= V[{3}] minus {3}:
while r < N do
S:= numtheory:-factorset(r+1);
if V[S] = {} then break fi;
r:= min(V[S]);
V[S]:= V[S] minus {r};
R:= R, r;
od:
R; # Robert Israel, May 25 2025
-
s={3};Do[i=2;While[MemberQ[s,i]||First/@FactorInteger[i]!=First/@FactorInteger[s[[-1]]+1],i++];AppendTo[s,i],{n,2,81}];s (* James C. McMahon, Jun 04 2025 *)
-
import heapq
from math import prod
from sympy import factorint
from itertools import islice
def bgen(pset): # generator of terms with set of prime divisors = pset
h = [prod(pset)]
while True:
v = heapq.heappop(h)
yield v
for p in pset:
heapq.heappush(h, v*p)
def agen(): # generator of terms
an, aset = 3, set()
while True:
yield an
aset.add(an)
an = next(m for m in bgen(set(factorint(an+1))) if m not in aset)
print(list(islice(agen(), 81))) # Michael S. Branicky, May 25 2025
Showing 1-7 of 7 results.
Comments