cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256922 Decimal expansion of Sum_{k>=2} (-1)^k*zeta(k)/(k*2^k).

Original entry on oeis.org

1, 6, 7, 8, 2, 5, 5, 9, 4, 8, 1, 5, 5, 2, 1, 2, 0, 7, 9, 5, 7, 7, 3, 7, 5, 9, 9, 2, 5, 9, 5, 5, 4, 0, 0, 3, 2, 6, 9, 2, 2, 6, 9, 4, 0, 0, 6, 7, 3, 6, 2, 3, 3, 1, 0, 3, 9, 0, 1, 5, 1, 4, 3, 6, 8, 5, 1, 0, 9, 1, 2, 6, 3, 6, 1, 5, 5, 0, 6, 5, 9, 7, 5, 4, 4, 2, 1, 8, 3, 9, 7, 8, 7, 1, 9, 9, 5, 4, 1, 0, 6, 6, 3, 1, 9
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.167825594815521207957737599259554003269226940067362331039...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 272.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/2 + (1/2)*Log(Pi(R)) - Log(2); // G. C. Greubel, Sep 05 2018
  • Mathematica
    RealDigits[EulerGamma/2 + (1/2)*Log[Pi] - Log[2], 10, 105] // First
  • PARI
    Euler/2 + log(Pi)/2 - log(2) \\ Michel Marcus, Apr 13 2015
    

Formula

Equals A001620/2 + (1/2)*log(Pi) - log(2).
Equals Sum_{k>=1} (1/(2*k) - log(1 + 1/(2*k))). - Amiram Eldar, Jul 22 2020
Equals (A001620 - A094640)/2. - Ruud H.G. van Tol, Apr 26 2025