cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256938 Expansion of g.f.: (1-3*z-sqrt(1-6*z+5*z^2+8*z^3-4*z^4))/(2*z^2*(1-z)).

Original entry on oeis.org

1, 2, 7, 24, 86, 316, 1189, 4562, 17796, 70398, 281812, 1139658, 4649402, 19112962, 79096155, 329258424, 1377798890, 5792421108, 24454224310, 103631241912, 440674939192, 1879769835968, 8041447249926, 34490981798188, 148295899087660, 639036278210420
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of lattice paths, never going below the x-axis, from (0,0) to (n,0) consisting of up steps U = (1,1), down steps D = (1,-1) and 2-colored horizontal steps H(k) = (k,0) for every positive integer k.

Crossrefs

Cf. A135052.

Programs

  • Mathematica
    CoefficientList[Series[(1-3*x-Sqrt[1-6*x+5*x^2+8*x^3-4*x^4])/(2*x^2*(1-x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 20 2015 *)
  • PARI
    x='x+O('x^50); Vec((1-3*x-sqrt(1 -6*x +5*x^2 +8*x^3 -4*x^4) )/(2*x^2*(1-x))) \\ G. C. Greubel, Jun 03 2017

Formula

a(s) = Sum_{n=0..s} (Sum_{m=0..(s-2*n)} (C(n)*binomial(m+2*n,m) *binomial(s-2*n-1,m-1) * 2^m)), where C(n) = A000108(n).
G.f.: (1-3*z-sqrt(1-6*z+5*z^2+8*z^3-4*z^4))/(2*z^2*(1-z)).
a(n) ~ sqrt(221 + 53*sqrt(17)) * (5+sqrt(17))^n / (sqrt(Pi) * n^(3/2) * 2^(n+2)). - Vaclav Kotesovec, Apr 20 2015
Recurrence: (n+2)*a(n) = (7*n+5)*a(n-1) - (11*n-2)*a(n-2) - 3*(n-5)*a(n-3) + 12*(n-3)*a(n-4) - 4*(n-4)*a(n-5). - Vaclav Kotesovec, Apr 20 2015