A256944 Squares which are not the sums of two consecutive nonsquares.
0, 1, 4, 9, 16, 36, 49, 64, 100, 144, 196, 256, 289, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1681, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100, 8464
Offset: 1
Examples
0, 1, 4, 9, 16, 36, are in this sequence because first 14 sums of two consecutive nonsquares are 5, 8, 11, 13, 15, 18, 21, 23, 25, 27, 29, 32, 35, 37.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
lim = 15000; s = Plus @@@ (Partition[#, 2, 1] & @ Complement[Range@ lim, Range[Floor@ Sqrt[lim]]^2]); Select[Range@ Floor[Sqrt[lim]]^2, !MemberQ[s, #] &] (* Michael De Vlieger, Apr 29 2015 *) lst=Partition[Select[Range[0,10^6],!IntegerQ[Sqrt[#]]&],2,1]/.{a_,b_}-> a+b;a256944=Complement[Table[n^2,{n,0,Sqrt[Last[lst]]}],lst] (* timing improved by Ivan N. Ianakiev, Apr 30 2015 *) Union[#, Range[0, Max@ #, 2]] &@ Numerator[Convergents[Sqrt@ 2, 6]]^2 (* Michael De Vlieger, Aug 06 2016, after Harvey P. Dale at A001333 *)
-
PARI
is(n)=issquare(n) && (n%2==0 || issquare(n\2) || issquare(n\2+1)) \\ Charles R Greathouse IV, May 07 2015
Formula
a(n) ~ 4n^2. - Charles R Greathouse IV, May 07 2015
a(n) = A257282(n)^2. - M. F. Hasler, May 08 2015
Comments