cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256978 Irregular triangle read by rows: coefficients of polynomials related to Stirling permutations.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 7, 3, 1, 1, 7, 29, 31, 29, 7, 1, 1, 15, 101, 195, 321, 195, 101, 15, 1, 1, 31, 327, 1001, 2507, 2661, 2507, 1001, 327, 31, 1, 1, 63, 1023, 4641, 16479, 26481, 37759, 26481, 16479, 4641, 1023, 63, 1, 1, 127, 3145, 20343, 98289, 221775, 439105, 461455, 439105, 221775, 98289, 20343, 3145, 127, 1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 23 2015

Keywords

Examples

			Triangle begins:
  n\k | 1   2   3    4    5    6    7    8   9  10  11
  ----+-----------------------------------------------
    1 | 1
    2 | 1   1   1
    3 | 1   3   7    3    1
    4 | 1   7  29   31   29    7    1
    5 | 1  15 101  195  321  195  101   15   1
    6 | 1  31 327 1001 2507 2661 2507 1001 327  31   1
    ...
		

Crossrefs

Cf. A185410.

Programs

  • Maxima
    gf : taylor((exp(z*(x - 1)*(x + 1)) + x)/(x + 1)*sqrt((1 - x^2)/(exp(2*z*(x - 1)*(x + 1)) - x^2)) - 1, z, 0, 50)$
    row(x, n) := n!*ratcoef(gf, z, n)$
    create_list(ratcoef(row(x, n), x, k), n, 1, 20, k, 1, hipow(row(x, n), x));
    /* Franck Maminirina Ramaharo, Feb 05 2019 */

Formula

E.g.f.: (exp(z*(x - 1)*(x + 1)) + x)/(x + 1)*sqrt((1 - x^2)/(exp(2*z*(x - 1)*(x + 1)) - x^2)) - 1. - Franck Maminirina Ramaharo, Feb 05 2019

Extensions

More terms from Franck Maminirina Ramaharo, Feb 05 2019