A257027 Numbers k such that 7*R_(k+2) - 6*10^k is prime, where R_k = 11...1 is the repunit (A002275) of length k.
0, 2, 3, 9, 11, 18, 74, 131, 144, 161, 224, 282, 390, 398, 614, 791, 1313, 1866, 9708, 10544, 13292, 13394, 29703, 30779, 72446
Offset: 1
Examples
For k=2, 7*R_4 - 6*10^2 = 7777 - 600 = 7177 which is prime. a(1)=0 associated with 71, a(2)=2 associated with 7177, a(3)=3 associated with 71777, a(4)=9 associated with 71777777777, etc. - _Robert Price_, Jul 31 2016
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 717w.
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Magma
[n: n in [0..300] | IsPrime((646*10^n-7) div 9)]; // Vincenzo Librandi, Apr 15 2015
-
Mathematica
Select[Range[0, 100000], PrimeQ[(646*10^#-7)/9 ] &]
-
PARI
for(n=0,200,if(isprime((646*10^n-7)/9),print1(n,", "))) \\ Derek Orr, Apr 14 2015
Extensions
a(25) from Robert Price, Jul 31 2016
Comments