cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257106 Denominators of the inverse binomial transform of the Bernoulli numbers with B(1)=2/3.

Original entry on oeis.org

1, 3, 6, 2, 10, 6, 42, 6, 30, 2, 22, 6, 2730, 6, 6, 2, 170, 6, 798, 6, 330, 2, 46, 6, 2730, 6, 6, 2, 290, 6, 14322, 6, 510, 2, 2, 6, 1919190, 6, 6, 2, 4510, 6, 1806, 6, 690, 2, 94, 6, 46410, 6, 66, 2, 530, 6, 798, 6, 870, 2, 118, 6, 56786730, 6, 6, 2, 170, 6
Offset: 0

Views

Author

Paul Curtz, Apr 23 2015

Keywords

Comments

Difference table of Bernoulli numbers with B(1)=2/3:
1, 2/3, 1/6, 0, -1/30, 0, 1/42, 0, ...
-1/3, -1/2, -1/6, -1/30, 1/30, 1/42, -1/42, ...
-1/6, 1/3, 2/15, 1/15, -1/105, -1/21, ...
1/2, -1/5, -1/15, -8/105, -4/105, ...
-7/10, 2/15, -1/105, 4/105, ...
5/6, -1/7, 1/21, ...
-41/42, 2/15, ...
7/6, ...
...
First column: 1, -1/3, -1/6, 1/2, -7/10, 5/6, -41/42, 7/6, -41/30, 3/2, -35/22, 11/6, ... . a(n) is the n-th term of the denominators.
Antidiagonal sums: 1, 1/3, -1/2, 2/3, -5/6, 1, -7/6, 4/3, -3/2, 5/3, -11/6, 2, ... . See A060789(n).
a(2n+2)/a(2n+1) = 2, 5, 7, 5, 11, 455, ... .
By definition, for B(1) = b, the inverse binomial transform is
Bi(b) = 1, -1 + b, 7/6 - 2*b, -3/2 + 3*b, 59/30 + 4*b, ...
= A176328(n)/A176591(n) - (-1)^n *n*b.
With Bic(b) = 0, -1/2 + b, 1 - 2*b, -3/2 + 3*b, 2 + 4*b, ...
= (-1)^n *(A001477(n)/2 - n*b),
Bi(b) = (-1)^n *(A164555(n)/A027642(n) + A001477(n)/2 - n*b) =
= A027641(n)/A027642(n) + Bic(b) .

Examples

			a(0) = 1-0, a(1) = -1/2 +1/6 = -1/3, a(2) = 1/6 -1/3 = -1/6, a(3) = 0 +1/2.
		

Crossrefs

Programs

  • Mathematica
    max = 66; B[1] = 2/3; B[n_] := BernoulliB[n]; BB = Array[B, max, 0]; a[n_] := Differences[BB, n] // First // Denominator; Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, May 11 2015 *)
  • Sage
    def A257106_list(len, B1) :
        T = matrix(QQ, 2*len+1)
        for m in (0..2*len) :
            T[0, m] = bernoulli_polynomial(1, m) if m <> 1 else B1
            for k in range(m-1, -1, -1) :
                T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
        return [denominator(T[k, 0]) for k in (0..len-1)]
    A257106_list(66, 2/3) # Peter Luschny, May 09 2015

Formula

Conjecture: a(2n+1) = 3 followed by period 3: repeat 2, 6, 6.
Conjecture: a(2n) = A002445(n)/(period 3: repeat 1, 1, 3).
a(n) = A027641(n)/A027642(n) - (-1)^n *n/6.