A257106 Denominators of the inverse binomial transform of the Bernoulli numbers with B(1)=2/3.
1, 3, 6, 2, 10, 6, 42, 6, 30, 2, 22, 6, 2730, 6, 6, 2, 170, 6, 798, 6, 330, 2, 46, 6, 2730, 6, 6, 2, 290, 6, 14322, 6, 510, 2, 2, 6, 1919190, 6, 6, 2, 4510, 6, 1806, 6, 690, 2, 94, 6, 46410, 6, 66, 2, 530, 6, 798, 6, 870, 2, 118, 6, 56786730, 6, 6, 2, 170, 6
Offset: 0
Keywords
Examples
a(0) = 1-0, a(1) = -1/2 +1/6 = -1/3, a(2) = 1/6 -1/3 = -1/6, a(3) = 0 +1/2.
Crossrefs
Programs
-
Mathematica
max = 66; B[1] = 2/3; B[n_] := BernoulliB[n]; BB = Array[B, max, 0]; a[n_] := Differences[BB, n] // First // Denominator; Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, May 11 2015 *)
-
Sage
def A257106_list(len, B1) : T = matrix(QQ, 2*len+1) for m in (0..2*len) : T[0, m] = bernoulli_polynomial(1, m) if m <> 1 else B1 for k in range(m-1, -1, -1) : T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k] return [denominator(T[k, 0]) for k in (0..len-1)] A257106_list(66, 2/3) # Peter Luschny, May 09 2015
Comments