A257935 Numerators of the inverse binomial transform of the Bernoulli numbers with B(1)=1.
1, 0, -5, 3, -61, 5, -125, 7, -121, 9, -325, 11, -17071, 13, -35, 15, -7697, 17, 36685, 19, -177911, 21, 852995, 23, -236396851, 25, 8553025, 27, -23749473209, 29, 8615841061175, 31, -7709321049377, 33, 2577687858265, 35, -26315271553088022793, 37
Offset: 0
Keywords
Examples
By the first formula: numerators of 1-0=1, -1/2+1/2=0, 1/6-1=-5/6, 0+3/2=3/2,....
Links
- Colin Barker, Table of n, a(n) for n = 0..629
Programs
-
Mathematica
max = 40; B[1] = 1; B[n_] := BernoulliB[n]; BB = Array[B, max, 0]; a[n_] := Differences[BB, n] // First // Numerator; Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, May 20 2015 *)
-
PARI
firstdiff(s) = my(t=vector(#s-1)); for(i=2, #s, t[i-1]=s[i]-s[i-1]); t a257935(k) = { my(s=[], b = concat([1,1], vector(k, n, n++; bernfrac(n)))); until(#b<2, s = concat(s, numerator(b[1])); b = firstdiff(b) ); s } a257935(50) \\ Colin Barker, May 13 2015
Formula
Extensions
More terms from Colin Barker, May 13 2015
Comments