A257108 Smallest prime p such that none of p+1, p+2, ..., p+n are squarefree.
2, 3, 7, 47, 241, 2887, 57119, 217069, 37923937, 211014919, 221167421, 221167421
Offset: 0
Examples
47 is a(3) because none of 2^2*12 = 48, 7^2 = 49, 2*5^2 = 50 is squarefree.
Crossrefs
Cf. A020754.
Programs
-
Maple
p:= 2: A[0]:= 2: for n from 1 to 8 do while ormap(numtheory:-issqrfree, [seq(p+i,i=1..n)]) do p:= nextprime(p) od: A[n]:= p; od: seq(A[i],i=1..8); # Robert Israel, Apr 23 2015
-
Mathematica
lst={2};Do[If[Union[SquareFreeQ/@Range[Prime[n]+1,Prime[n]+Length[lst]]]=={False},AppendTo[lst,Prime[n]]],{n,10^5}];lst (* Ivan N. Ianakiev, May 02 2015 *)
-
PARI
a(n)=forprime(p=2, , for(k=1, n, if(issquarefree(p+k), next(2))); return(p)) \\ Charles R Greathouse IV, Apr 29 2015
Formula
a(n) << A002110(n)^10 by the CRT and Xylouris' improvement to Linnik's theorem. - Charles R Greathouse IV, Apr 29 2015
Extensions
a(8) from Robert Israel, Apr 23 2015
a(9)-a(11) from Charles R Greathouse IV, Apr 29 2015
Comments