A257113 a(1) = 2, a(2) = 3; thereafter a(n) is the sum of all the previous terms.
2, 3, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- E. R. Berlekamp, A contribution to mathematical psychometrics, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]
- David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
- Index entries for linear recurrences with constant coefficients, signature (2).
Programs
-
Magma
[2,3] cat [5*2^n: n in [0..35]]; // Vincenzo Librandi, May 15 2015
-
Mathematica
t = {2, 3}; For[k = 3, k <= 27, k++, AppendTo[t, Total@ t]]; t (* Michael De Vlieger, May 14 2015 *) Join[{2, 3}, Table[5 2^n, {n, 0, 40}]] (* Vincenzo Librandi, May 15 2015 *) Join[{2,3},NestList[2#&,5,40]] (* Harvey P. Dale, Apr 06 2018 *)
-
PARI
a(n) = if(n<3, n+1, 5*2^(n-3)); \\ Altug Alkan, Jul 18 2018
-
PARI
Vec(x*(1 - x)*(2 + x) / (1 - 2*x) + O(x^40)) \\ Colin Barker, Nov 17 2018
-
PARI
a(n) = ceil(5*2^(n-3)) \\ Alan Michael Gómez Calderón, Mar 30 2022
Formula
a(n) = A020714(n-3) for n>2.
a(n) = A146523(n-2) for n>2. - R. J. Mathar, May 14 2015
G.f.: x*(1 - x)*(2 + x) / (1 - 2*x). - Colin Barker, Nov 17 2018
Comments